In the Priority $k$-Center problem, the input consists of a metric space $(X,d)$, an integer $k$ and for each point $v \in X$ a priority radius $r(v)$. The goal is to choose $k$-centers $S \subseteq X$ to minimize $\max_{v \in X} \frac{1}{r(v)} d(v,S)$. If all $r(v)$'s were uniform, one obtains the classical $k$-center problem. Plesn\'ik [Plesn\'ik, Disc. Appl. Math. 1987] introduced this problem and gave a $2$-approximation algorithm matching the best possible algorithm for vanilla $k$-center. We show how the problem is related to two different notions of fair clustering [Harris et al., NeurIPS 2018; Jung et al., FORC 2020]. Motivated by these developments we revisit the problem and, in our main technical contribution, develop a framework that yields constant factor approximation algorithms for Priority $k$-Center with outliers. Our framework extends to generalizations of Priority $k$-Center to matroid and knapsack constraints, and as a corollary, also yields algorithms with fairness guarantees in the lottery model of Harris et al.
翻译:在“优先”$k$-Center 问题中,投入包括一个公吨空间$(X,d)美元,一个整金美元,每点一美元一美元一美元一美元一美元一美元一美元一美元一美元优先半方圆 美元一美元一美元。目标是选择美元一美元一美元一美元一美元一美元一美元一美元一美元。目标是选择美元一美元一美元一美元一美元一美元一美元一美元,以尽量减少美元一美元一美元一美元一美元一美元一美元d(v)d(v)美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一美元一比一美元一美元一美元一比一美元一比一美元一美元一美元一美元一比一美元一美元一美元一数一美元一比一比一美元一美元一美元一数一数一数一数一数一数一数一数一数一数一数一数。