We address an inherent difficulty in welfare-theoretic fair machine learning, proposing an equivalently-axiomatically justified alternative, and studying the resulting computational and statistical learning questions. Welfare metrics quantify overall wellbeing across a population of one or more groups, and welfare-based objectives and constraints have recently been proposed to incentivize fair machine learning methods to produce satisfactory solutions that consider the diverse needs of multiple groups. Unfortunately, many machine-learning problems are more naturally cast as loss minimization, rather than utility maximization tasks, which complicates direct application of welfare-centric methods to fair-ML tasks. In this work, we define a complementary measure, termed malfare, measuring overall societal harm (rather than wellbeing), with axiomatic justification via the standard axioms of cardinal welfare. We then cast fair machine learning as a direct malfare minimization problem, where a group's malfare is their risk (expected loss). Surprisingly, the axioms of cardinal welfare (malfare) dictate that this is not equivalent to simply defining utility as negative loss. Building upon these concepts, we define fair-PAC learning, where a fair PAC-learner is an algorithm that learns an $\varepsilon$-$\delta$ malfare-optimal model with bounded sample complexity, for any data distribution, and for any malfare concept. We show broad conditions under which, with appropriate modifications, many standard PAC-learners may be converted to fair-PAC learners. This places fair-PAC learning on firm theoretical ground, as it yields statistical, and in some cases computational, efficiency guarantees for many well-studied machine-learning models, and is also practically relevant, as it democratizes fair ML by providing concrete training algorithms and rigorous generalization guarantees for these models.


翻译:我们处理福利-理论公平机器学习的内在困难,提出一个等量轴理论合理的替代方法,并研究由此得出的计算和统计学习问题。福利指标量化了一个或一个以上群体的总体福祉,最近提出了基于福利的目标和制约因素,以激励公平的机器学习方法,提出考虑到多种群体不同需要的满意解决方案。不幸的是,许多机器学习问题更自然地被描绘成“尽量减少损失”,而不是“尽量扩大效用”任务,这使得直接应用以福利为核心的数学方法来公平-ML任务更为复杂。在这项工作中,我们定义了一种补充措施,称为“恶意”,衡量整体社会伤害(而不是福利),通过基本福利的标准xxxx;然后,我们把公平的机器学习视为一个直接的恶意最小化问题,因为一个团体的弊端是他们的风险(预期损失 ) 。 令人惊讶的是, 基本福利( 错误) 的氧化性条件( ) 也表明这不等于简单地将功能定义为负损失。基于这些概念,我们定义了公平-PAC美元的实际学习, 在一种公平的成本-成本的数学模型中, 将它展示一个正常的数学记录。

0
下载
关闭预览

相关内容

《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月13日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员