It is increasingly suggested to identify Software Vulnerabilities (SVs) in code commits to give early warnings about potential security risks. However, there is a lack of effort to assess vulnerability-contributing commits right after they are detected to provide timely information about the exploitability, impact and severity of SVs. Such information is important to plan and prioritize the mitigation for the identified SVs. We propose a novel Deep multi-task learning model, DeepCVA, to automate seven Commit-level Vulnerability Assessment tasks simultaneously based on Common Vulnerability Scoring System (CVSS) metrics. We conduct large-scale experiments on 1,229 vulnerability-contributing commits containing 542 different SVs in 246 real-world software projects to evaluate the effectiveness and efficiency of our model. We show that DeepCVA is the best-performing model with 38% to 59.8% higher Matthews Correlation Coefficient than many supervised and unsupervised baseline models. DeepCVA also requires 6.3 times less training and validation time than seven cumulative assessment models, leading to significantly less model maintenance cost as well. Overall, DeepCVA presents the first effective and efficient solution to automatically assess SVs early in software systems.


翻译:在代码中越来越多地建议查明软件脆弱性,承诺对潜在安全风险发出预警,但缺乏对脆弱性促成者在发现后承诺及时提供关于SV的可利用性、影响和严重程度的信息的评估。这种信息对于规划和优先减轻已查明SV的可利用性、影响和严重程度非常重要。我们提议了一个新型的深多任务学习模式,即深任务学习模式,即深任务VA,以根据共同脆弱度分辨系统(CVSS)的衡量标准,同时使七个层次的脆弱性评估任务自动化。我们对1 229个脆弱性促成者进行大规模实验,承诺在246个现实世界软件项目中包含542个不同的SV,以评价我们模型的效力和效率。我们表明,DeepCVA是最佳的模型,比许多受监管和未受监督的基线模型高38%至59.8%。DeepCVA还需要比7个累积评估模型少6.3倍的培训和验证时间,导致模型维护成本大大降低。总体而言,深 CVA提出在软件系统中自动评估SV的早期系统自动评估第一种有效和高效的解决办法。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月12日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
45+阅读 · 2019年12月20日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年6月12日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员