Prior works have proposed several strategies to reduce the computational cost of self-attention mechanism. Many of these works consider decomposing the self-attention procedure into regional and local feature extraction procedures that each incurs a much smaller computational complexity. However, regional information is typically only achieved at the expense of undesirable information lost owing to down-sampling. In this paper, we propose a novel Transformer architecture that aims to mitigate the cost issue, named Dual Vision Transformer (Dual-ViT). The new architecture incorporates a critical semantic pathway that can more efficiently compress token vectors into global semantics with reduced order of complexity. Such compressed global semantics then serve as useful prior information in learning finer pixel level details, through another constructed pixel pathway. The semantic pathway and pixel pathway are then integrated together and are jointly trained, spreading the enhanced self-attention information in parallel through both of the pathways. Dual-ViT is henceforth able to reduce the computational complexity without compromising much accuracy. We empirically demonstrate that Dual-ViT provides superior accuracy than SOTA Transformer architectures with reduced training complexity. Source code is available at \url{https://github.com/YehLi/ImageNetModel}.


翻译:先前的作品提出了几项降低自留机制计算成本的战略,其中许多工程考虑将自留程序分解为区域和地方地物提取程序,而每个程序在计算上的复杂性要小得多。然而,区域信息通常只能以降低自留程序损失的不良信息为代价实现。在本论文中,我们提议了一个旨在缓解成本问题的新型变异器结构,名为“双重愿景变异器(Dual-ViT) ” 。新的结构包含一个关键语义路径,可以更有效地将代号矢量压缩成复杂程度较低的全球语义。这种压缩的全球语义学随后成为学习精细像级细节的有用信息,通过另一个构建的像素路径。语义路径和像素路径随后合并并经过联合培训,通过两个路径平行传播强化的自留信息。二元ViT今后能够降低计算复杂性,而不会损害很多准确性。我们的经验显示,二维T提供比SITA变异源结构更精准,而培训复杂程度较低。MUFFL{ML} 源代码可在两个路径上查到。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年3月16日
Transformers in Medical Image Analysis: A Review
Arxiv
40+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
23+阅读 · 2020年9月16日
VIP会员
相关论文
Arxiv
11+阅读 · 2022年3月16日
Transformers in Medical Image Analysis: A Review
Arxiv
40+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
23+阅读 · 2020年9月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员