This study is focused on evaluating the real-time performance of thermal object detection for smart and safe vehicular systems by deploying the trained networks on GPU & single-board EDGE-GPU computing platforms for onboard automotive sensor suite testing. A novel large-scale thermal dataset comprising of > 35,000 distinct frames is acquired, processed, and open-sourced in challenging weather and environmental scenarios. The dataset is a recorded from lost-cost yet effective uncooled LWIR thermal camera, mounted stand-alone and on an electric vehicle to minimize mechanical vibrations. State-of-the-art YOLO-V5 networks variants are trained using four different public datasets as well newly acquired local dataset for optimal generalization of DNN by employing SGD optimizer. The effectiveness of trained networks is validated on extensive test data using various quantitative metrics which include precision, recall curve, mean average precision, and frames per second. The smaller network variant of YOLO is further optimized using TensorRT inference accelerator to explicitly boost the frames per second rate. Optimized network engine increases the frames per second rate by 3.5 times when testing on low power edge devices thus achieving 11 fps on Nvidia Jetson Nano and 60 fps on Nvidia Xavier NX development boards.
翻译:本研究的重点是通过部署GPU和单板EDGE-GPU计算机平台的经过培训的GPU和单板 EDGE-GPU计算机平台,在汽车传感器套装测试套件上测试,评估智能和安全车辆系统热物体探测的实时性能;在具有挑战性的天气和环境假设中,获得、处理和开放来源的新型大型热数据集,该数据集由35 000个不同的框架组成;该数据集记录于成本低廉但有效的低温LWIR热摄像头、安装的自动机和电动车辆,以最大限度地减少机械振动;利用四个不同的公共数据集以及新获得的本地数据集,对DNNNN进行训练;利用SGD优化仪,利用各种定量指标,包括精确度、回顾曲线、平均精确度和每秒框架,对广泛的测试数据进行验证;利用TensorRT推推推,进一步优化YOLO的小型网络变异功能,以明确提升每秒NOLO-V5网络变异器的框架;在NVVS-S-Firvi级机能板上,通过3.5次测试时,使NAVVV-S-S-Firvi机机发动机提高每秒电压。