项目名称: 基于TSV互连的三维FPGA架构及关键技术研究

项目编号: No.61271149

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 杨海钢

作者单位: 中国科学院电子学研究所

项目金额: 80万元

中文摘要: 随着FPGA集成规模不断发展,传统二维芯片结构导致的长互连延时、时钟同步困难以及电源网络的电压降(IR Drop)等诸多问题逐渐凸现。基于TSV互连的三维集成技术,是最有潜力且现实可行的下一代吉规模FPGA的解决方案。在综合分析已报道的四种三维FPGA架构的性能优劣与应用TSV互连的可行性后,本项目将着重研究以功耗为优化目标的分层及资源分配策略,解决由散热不均匀引起的三维FPGA的热稳定性问题;研究TSV互连的冗余修复电路,解决由制造缺陷或热应力效应引起的三维FPGA的可靠性问题;研究三维FPGA结构参数与芯片性能之间的各种约束关系,提出架构优化的评估与设计方法。此外,作为三维FPGA架构研究的基础,探索三维FPGA中垂直互连TSV的制造缺陷机理分析及建模方法,构建三维FPGA垂直互连TSV的延时和功耗模型,为三维FPGA的研制奠定理论基础。

中文关键词: 三维FPGA;穿透硅通孔;架构;热分析;机器学习

英文摘要: As FPGA chips grow in complexity, the problems such as interconnect delay, clock synchronization and IR drop in power grid have become more severe than ever. Among emerging technologies, three dimentional integration based on through silicon vias (TSV) is the most promising candidate to solve such problems. Taking into consideration the four existing 3-D FPGA architectures and the availability of TSV structures as interconnects, this project chooses general asymmetric structures as the basic building block for 3-D FPGAs based on TSV interconnects, and explores the architecture in terms of thermal stability, system stability and optimization methodology. We will work on the strategy for seeking an algorithm of the distribution of resources among the layers to achieve lowest possible power consumption, and find the solution for the thermal stability of 3-D FPGAs. Meanwhile, we will explore the recovery mechanism for TSV interconnect defects which are induced in the manufacture process or caused by thermal stress effects. Based on the aforementioned works, we will propose an optimized design methodology of TSV-based 3-D FPGAs. Furthermore, we will study the key technologies for building 3-D FPGAs with TSV interconnects: establishing delay and power consumption models for TSV structures, modelling TSV manufacture de

英文关键词: 3D FPGA;TSV;Architecture;Thermal Analysis;Machine Learning

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
卷积神经网络压缩中的知识蒸馏技术综述
专知会员服务
54+阅读 · 2021年10月23日
专知会员服务
22+阅读 · 2021年7月15日
图计算加速架构综述
专知会员服务
49+阅读 · 2021年4月5日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
65+阅读 · 2020年6月24日
专知会员服务
80+阅读 · 2020年6月20日
专知会员服务
73+阅读 · 2020年5月21日
深度解析 Jetpack Compose 布局
谷歌开发者
0+阅读 · 2022年3月31日
「深度神经网络 FPGA 」最新2022研究综述
专知
3+阅读 · 2022年3月26日
FPGA加速深度学习综述
专知
3+阅读 · 2021年11月13日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
图计算加速架构综述
专知
0+阅读 · 2021年4月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
103+阅读 · 2021年6月8日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
卷积神经网络压缩中的知识蒸馏技术综述
专知会员服务
54+阅读 · 2021年10月23日
专知会员服务
22+阅读 · 2021年7月15日
图计算加速架构综述
专知会员服务
49+阅读 · 2021年4月5日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
65+阅读 · 2020年6月24日
专知会员服务
80+阅读 · 2020年6月20日
专知会员服务
73+阅读 · 2020年5月21日
相关资讯
深度解析 Jetpack Compose 布局
谷歌开发者
0+阅读 · 2022年3月31日
「深度神经网络 FPGA 」最新2022研究综述
专知
3+阅读 · 2022年3月26日
FPGA加速深度学习综述
专知
3+阅读 · 2021年11月13日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
图计算加速架构综述
专知
0+阅读 · 2021年4月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员