We study the problem of efficiently generating high-quality and diverse content in games. Previous work on automated deckbuilding in Hearthstone shows that the quality diversity algorithm MAP-Elites can generate a collection of high-performing decks with diverse strategic gameplay. However, MAP-Elites requires a large number of expensive evaluations to discover a diverse collection of decks. We propose assisting MAP-Elites with a deep surrogate model trained online to predict game outcomes with respect to candidate decks. MAP-Elites discovers a diverse dataset to improve the surrogate model accuracy, while the surrogate model helps guide MAP-Elites towards promising new content. In a Hearthstone deckbuilding case study, we show that our approach improves the sample efficiency of MAP-Elites and outperforms a model trained offline with random decks, as well as a linear surrogate model baseline, setting a new state-of-the-art for quality diversity approaches in automated Hearthstone deckbuilding. We include the source code for all the experiments at: https://github.com/icaros-usc/EvoStone2.
翻译:我们研究了在游戏中高效生成高质量和多样化内容的问题。 在赫特斯通的自动化甲板建设中,以往的工作显示,高质量的多样性算法 MAP-Elites 能够生成一系列具有不同战略游戏功能的高性能甲板。然而, MAP-Elites 需要大量昂贵的评估才能发现各种各样的甲板。 我们建议协助MAP-Elites, 其深层代用模型经过在线培训, 以预测候选甲板的游戏结果。 MAP- Elites 发现了一套不同的数据集, 以提高代用模型的准确性, 而代用模型有助于引导MAP- Elites 实现有希望的新内容。 在一份赫特斯通甲板建设案例研究中, 我们展示了我们的方法提高了MAP-Elites的样本效率, 并超越了一种经过随机甲板培训的离线模型, 以及一个线性替代模型基线, 以在自动的赫特制甲板建筑中为质量多样性方法设定了新的状态。 我们把所有实验的来源代码纳入了: https://github.com/icaros-us-us/EvoStoone2。