When the individual studies assembled for a meta-analysis report means ($\mu_C$, $\mu_T$) for their treatment (T) and control (C) arms, but those data are on different scales or come from different instruments, the customary measure of effect is the standardized mean difference (SMD). The SMD is defined as the difference between the means in the treatment and control arms, standardized by the assumed common standard deviation, $\sigma$. However, if the variances in the two arms differ, there is no consensus on a definition of SMD. Thus, we propose a new effect measure, the difference of standardized means (DSM), defined as $\Delta = \mu_T/\sigma_T - \mu_C/\sigma_C$. The estimated DSM can easily be used as an effect measure in standard meta-analysis. For random-effects meta-analysis of DSM, we introduce new point and interval estimators of the between-studies variance ($\tau^2$) based on the $Q$ statistic with effective-sample-size weights, $Q_F$. We study, by simulation, bias and coverage of these new estimators of $\tau^2$ and related estimators of $\Delta$. For comparison, we also study bias and coverage of well-known estimators based on the $Q$ statistic with inverse-variance weights, $Q_{IV}$, such as the Mandel-Paule, DerSimonian-Laird, and restricted-maximum-likelihood estimators.


翻译:当元分析汇总的个体研究报告治疗和对照组的均值($\mu_C$,$\mu_T$)以不同的刻度或不同的仪器进行测量时,习惯上的效应度量是标准化平均差异(SMD)。SMD的定义为,治疗组和对照组之间的均值差异,由假定的公共标准差$\sigma$标准化。然而,如果两组的方差不同,则没有关于 SMD 的定义达成共识。 因此,我们提出了一种新的效应量度量,即标准化均值的差异(DSM),定义为 $\Delta = \mu_T/\sigma_T - \mu_C/\sigma_C$。DSM的估计可以方便地用作标准元分析的效应度量。针对DSM的随机效应元分析,我们引入了基于 Q 统计量和有效样本大小权重$Q_F$的研究间方差$\tau^2$的新点估计量和区间估计量。我们通过模拟研究这些新的 $\tau^2$ 估计器和相关的 $\Delta$ 估计器的偏差和覆盖率。为了比较,我们还研究了基于反比权重的 Q 统计量,例如 Mandel-Paule 估计量,DerSimonian-Laird 估计量和限制-最大似然估计量的偏差和覆盖率。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员