In many situations, we would like to hear desired sound events (SEs) while being able to ignore interference. Target sound extraction (TSE) tackles this problem by estimating the audio signal of the sounds of target SE classes in a mixture of sounds while suppressing all other sounds. We can achieve this with a neural network that extracts the target SEs by conditioning it on clues representing the target SE classes. Two types of clues have been proposed, i.e., target SE class labels and enrollment audio samples (or audio queries), which are pre-recorded audio samples of sounds from the target SE classes. Systems based on SE class labels can directly optimize embedding vectors representing the SE classes, resulting in high extraction performance. However, extending these systems to extract new SE classes not encountered during training is not easy. Enrollment-based approaches extract SEs by finding sounds in the mixtures that share similar characteristics to the enrollment audio samples. These approaches do not explicitly rely on SE class definitions and can thus handle new SE classes. In this paper, we introduce a TSE framework, SoundBeam, that combines the advantages of both approaches. We also perform an extensive evaluation of the different TSE schemes using synthesized and real mixtures, which shows the potential of SoundBeam.


翻译:在很多情况下,我们希望听到人们所希望的音频事件,同时能够忽略干扰; 目标音频提取(TSE)通过估计SE类目标声音的音讯信号来解决这个问题,在声音的混合体中对SE类目标声音的音讯信号进行估计,同时抑制所有其他声音; 我们可以通过神经网络来做到这一点,通过对SE类目标信号的线索进行调整来提取目标SE。 提出了两类线索,即SE类目标标签和录制音样(或音频查询),它们是SE类目标声音的预录音频样样本。 基于SE类标签的系统可以直接优化SE类的矢量的嵌入,从而产生高的提取性能。 然而,扩大这些系统以提取在培训期间没有遇到的新SE类目标的音讯讯号来做到这一点并非易事。 引入了SEE的方法并不明确依赖SE类标签和音频样本,因此可以处理新的SE类。 在本文中,我们引入了TSEEE框架,即SE框架,将两种方法的优势结合起来,我们还进行了广泛的组合。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员