Factorial designs are widely used due to their ability to accommodate multiple factors simultaneously. The factor-based regression with main effects and some interactions is the dominant strategy for downstream data analysis, delivering point estimators and standard errors via one single regression. Justification of these convenient estimators from the design-based perspective requires quantifying their sampling properties under the assignment mechanism conditioning on the potential outcomes. To this end, we derive the sampling properties of the factor-based regression estimators from both saturated and unsaturated models, and demonstrate the appropriateness of the robust standard errors for the Wald-type inference. We then quantify the bias-variance trade-off between the saturated and unsaturated models from the design-based perspective, and establish a novel design-based Gauss--Markov theorem that ensures the latter's gain in efficiency when the nuisance effects omitted indeed do not exist. As a byproduct of the process, we unify the definitions of factorial effects in various literatures and propose a location-shift strategy for their direct estimation from factor-based regressions. Our theory and simulation suggest using factor-based inference for general factorial effects, preferably with parsimonious specifications in accordance with the prior knowledge of zero nuisance effects.


翻译:由于能够同时兼顾多种因素,因此广泛使用系数设计,因为它们能够同时兼顾多种因素。主要效果和一些相互作用的基于系数的回归是下游数据分析的主要策略,通过单一回归提供点估计和标准差错。从设计角度对这些方便估计者进行合理估计,需要根据潜在结果的外派机制对其抽样属性进行量化。为此,我们从饱和和和不饱和模型中取出基于系数的回归估计者的抽样特性,并表明Wald型推论的强标准差的恰当性能。然后,我们从设计角度量化饱和和和不饱和模型之间的偏差取舍取舍,并建立一个基于设计的新颖的基于设计估计的高斯-马尔科夫理论,以确保后者在以潜在结果为条件的外延效应确实不存在时,效率就会得到提高。作为这一过程的副产品,我们统一了各种文献中对因子效应的定义,并提出了从基于系数的回归中直接估计其位置变化的战略。我们理论和模拟了基于因素的精细性先变。我们用基于因素的精细的理论和模拟的精细度来建议,将精细的精细的精细性推。

0
下载
关闭预览

相关内容

应用机器学习书稿,361页pdf
专知会员服务
59+阅读 · 2020年11月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月7日
Loss Estimators Improve Model Generalization
Arxiv
0+阅读 · 2021年3月5日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员