In this paper, we develop a penalized realized variance (PRV) estimator of the quadratic variation (QV) of a high-dimensional continuous It\^{o} semimartingale. We adapt the principle idea of regularization from linear regression to covariance estimation in a continuous-time high-frequency setting. We show that under a nuclear norm penalization, the PRV is computed by soft-thresholding the eigenvalues of realized variance (RV). It therefore encourages sparsity of singular values or, equivalently, low rank of the solution. We prove our estimator is minimax optimal up to a logarithmic factor. We derive a concentration inequality, which reveals that the rank of PRV is -- with a high probability -- the number of non-negligible eigenvalues of the QV. Moreover, we also provide the associated non-asymptotic analysis for the spot variance. We suggest an intuitive data-driven bootstrap procedure to select the shrinkage parameter. Our theory is supplemented by a simulation study and an empirical application. The PRV detects about three-five factors in the equity market, with a notable rank decrease during times of distress in financial markets. This is consistent with most standard asset pricing models, where a limited amount of systematic factors driving the cross-section of stock returns are perturbed by idiosyncratic errors, rendering the QV -- and also RV -- of full rank.
翻译:在本文中,我们开发了高维连续的It ⁇ o}半二次曲线的受罚的已实现差异(PRV)估计值。我们把正规化的原则理念从线性回归转变为连续高频环境下的共差估计。我们显示,在核规范处罚下,PRV是通过软性保存已实现差异的无源值计算的。因此,它鼓励单值的宽度,或相等于解决方案的低级级。我们证明,我们的估测器是最小的,最优于对数因素。我们得出了浓度不平等,这表明PRV的等级 -- -- 极有可能 -- -- 是连续高时高频高频环境中的无源值。此外,我们还提供了相关的非随机差异非源值分析。我们建议通过直观的数据驱动靴套件程序选择收缩参数。我们的理论得到了模拟研究和经验应用的补充。我们得出的浓度不平等表明,PRV的等级等级等级是 -- -- QV最有可能 -- -- QV的不可忽略的超值值值值值值值值值。此外,RV的跨级模型在三种风险中测算算出一个稳定的市场中,其价值是稳定的递增值。