In this paper, we develop a penalized realized variance (PRV) estimator of the quadratic variation (QV) of a high-dimensional continuous It\^{o} semimartingale. We adapt the principle idea of regularization from linear regression to covariance estimation in a continuous-time high-frequency setting. We show that under a nuclear norm penalization, the PRV is computed by soft-thresholding the eigenvalues of realized variance (RV). It therefore encourages sparsity of singular values or, equivalently, low rank of the solution. We prove our estimator is minimax optimal up to a logarithmic factor. We derive a concentration inequality, which reveals that the rank of PRV is -- with a high probability -- the number of non-negligible eigenvalues of the QV. Moreover, we also provide the associated non-asymptotic analysis for the spot variance. We suggest an intuitive data-driven bootstrap procedure to select the shrinkage parameter. Our theory is supplemented by a simulation study and an empirical application. The PRV detects about three-five factors in the equity market, with a notable rank decrease during times of distress in financial markets. This is consistent with most standard asset pricing models, where a limited amount of systematic factors driving the cross-section of stock returns are perturbed by idiosyncratic errors, rendering the QV -- and also RV -- of full rank.


翻译:在本文中,我们开发了高维连续的It ⁇ o}半二次曲线的受罚的已实现差异(PRV)估计值。我们把正规化的原则理念从线性回归转变为连续高频环境下的共差估计。我们显示,在核规范处罚下,PRV是通过软性保存已实现差异的无源值计算的。因此,它鼓励单值的宽度,或相等于解决方案的低级级。我们证明,我们的估测器是最小的,最优于对数因素。我们得出了浓度不平等,这表明PRV的等级 -- -- 极有可能 -- -- 是连续高时高频高频环境中的无源值。此外,我们还提供了相关的非随机差异非源值分析。我们建议通过直观的数据驱动靴套件程序选择收缩参数。我们的理论得到了模拟研究和经验应用的补充。我们得出的浓度不平等表明,PRV的等级等级等级是 -- -- QV最有可能 -- -- QV的不可忽略的超值值值值值值值值值。此外,RV的跨级模型在三种风险中测算算出一个稳定的市场中,其价值是稳定的递增值。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员