This paper proposes a deep recurrent Rotation Averaging Graph Optimizer (RAGO) for Multiple Rotation Averaging (MRA). Conventional optimization-based methods usually fail to produce accurate results due to corrupted and noisy relative measurements. Recent learning-based approaches regard MRA as a regression problem, while these methods are sensitive to initialization due to the gauge freedom problem. To handle these problems, we propose a learnable iterative graph optimizer minimizing a gauge-invariant cost function with an edge rectification strategy to mitigate the effect of inaccurate measurements. Our graph optimizer iteratively refines the global camera rotations by minimizing each node's single rotation objective function. Besides, our approach iteratively rectifies relative rotations to make them more consistent with the current camera orientations and observed relative rotations. Furthermore, we employ a gated recurrent unit to improve the result by tracing the temporal information of the cost graph. Our framework is a real-time learning-to-optimize rotation averaging graph optimizer with a tiny size deployed for real-world applications. RAGO outperforms previous traditional and deep methods on real-world and synthetic datasets. The code is available at https://github.com/sfu-gruvi-3dv/RAGO
翻译:本文建议对多旋转图像优化(RAGO)采用一个深层的反复回旋式图像优化器(RAGO),用于多旋转图像优化。 常规优化方法通常不会产生准确的结果, 原因是对每个节点的单一旋转目标功能进行腐蚀和紧张的测量。 最近的学习型方法将MRA视为一个回归问题, 而这些方法对于初始化也十分敏感。 为了处理这些问题, 我们提议了一个可学习的迭代图形优化器(RAGO), 以边端校正战略来最大限度地减少一个测量异性成本函数。 我们的图形优化器通过将每个节点的单个旋转目标功能最小化, 迭代调整相对的旋转, 使其与当前的相机方向更加一致, 并观察相对旋转。 此外, 我们使用一个封闭的经常单位来通过跟踪成本图表的时间信息来改进结果。 我们的框架是一个实时学习到优化旋转平均图形优化的旋转优化器, 用于现实世界应用。 RAGGO 超越了在现实世界和合成数据集上的传统和深层方法。