In the matroid partitioning problem, we are given $k$ matroids $\mathcal{M}_1 = (V, \mathcal{I}_1), \dots , \mathcal{M}_k = (V, \mathcal{I}_k)$ defined over a common ground set $V$ of $n$ elements, and we need to find a partitionable set $S \subseteq V$ of largest possible cardinality, denoted by $p$. Here, a set $S \subseteq V$ is called partitionable if there exists a partition $(S_1, \dots , S_k)$ of $S$ with $S_i \in \mathcal{I}_i$ for $i = 1, \ldots, k$. In 1986, Cunningham [SICOMP 1986] presented a matroid partition algorithm that uses $O(n p^{3/2} + k n)$ independence oracle queries, which was the previously known best algorithm. This query complexity is $O(n^{5/2})$ when $k \leq n$. Our main result is to present a matroid partition algorithm that uses $\tilde{O}(k'^{1/3} n p + k n)$ independence oracle queries, where $k' = \min\{k, p\}$. This query complexity is $\tilde{O}(n^{7/3})$ when $k \leq n$, and this improves upon the one of previous Cunningham's algorithm. To obtain this, we present a new approach \emph{edge recycling augmentation}, which can be attained through new ideas: an efficient utilization of the binary search technique by Nguyen [2019] and Chakrabarty-Lee-Sidford-Singla-Wong [FOCS 2019] and a careful analysis of the independence oracle query complexity. Our analysis differs significantly from the one for matroid intersection algorithms, because of the parameter $k$. We also present a matroid partition algorithm that uses $\tilde{O}((n + k) \sqrt{p})$ rank oracle queries.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月23日
Arxiv
0+阅读 · 2024年1月23日
Arxiv
0+阅读 · 2024年1月22日
Arxiv
0+阅读 · 2024年1月21日
Arxiv
0+阅读 · 2024年1月20日
Simulation Based Bayesian Optimization
Arxiv
0+阅读 · 2024年1月19日
Arxiv
0+阅读 · 2024年1月18日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2024年1月23日
Arxiv
0+阅读 · 2024年1月23日
Arxiv
0+阅读 · 2024年1月22日
Arxiv
0+阅读 · 2024年1月21日
Arxiv
0+阅读 · 2024年1月20日
Simulation Based Bayesian Optimization
Arxiv
0+阅读 · 2024年1月19日
Arxiv
0+阅读 · 2024年1月18日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员