Decipherment of historical ciphers is a challenging problem. The language of the target plaintext might be unknown, and ciphertext can have a lot of noise. State-of-the-art decipherment methods use beam search and a neural language model to score candidate plaintext hypotheses for a given cipher, assuming the plaintext language is known. We propose an end-to-end multilingual model for solving simple substitution ciphers. We test our model on synthetic and real historical ciphers and show that our proposed method can decipher text without explicit language identification while still being robust to noise.
翻译:历史密码的破解是一个棘手的问题。 目标直截面的语言可能并不为人所知, 并且密码文本可能有很多噪音。 最先进的破译方法使用光束搜索和神经语言模型来对特定密码的候选直截面假设进行评分, 假设可以知道直截面语言。 我们提出了一个解决简单替代密码的端到端多语模式。 我们测试了我们合成和真实历史密码的模型, 并表明我们建议的方法可以在没有明确语言识别的情况下对文本进行解译, 同时仍然对噪音保持坚固。