Graph Neural Networks (GNNs) have achieved promising performance in various real-world applications. However, recent studies have shown that GNNs are vulnerable to adversarial attacks. In this paper, we study a recently-introduced realistic attack scenario on graphs -- graph injection attack (GIA). In the GIA scenario, the adversary is not able to modify the existing link structure and node attributes of the input graph, instead the attack is performed by injecting adversarial nodes into it. We present an analysis on the topological vulnerability of GNNs under GIA setting, based on which we propose the Topological Defective Graph Injection Attack (TDGIA) for effective injection attacks. TDGIA first introduces the topological defective edge selection strategy to choose the original nodes for connecting with the injected ones. It then designs the smooth feature optimization objective to generate the features for the injected nodes. Extensive experiments on large-scale datasets show that TDGIA can consistently and significantly outperform various attack baselines in attacking dozens of defense GNN models. Notably, the performance drop on target GNNs resultant from TDGIA is more than double the damage brought by the best attack solution among hundreds of submissions on KDD-CUP 2020.


翻译:神经网络(GNNs)在现实世界的各种应用中取得了有希望的绩效。然而,最近的研究表明,GNNs很容易受到对抗性攻击。在本文中,我们研究了最近在图表 -- -- 图形注射攻击(GIA)上推出的现实攻击情景。在GIA的假设中,对手无法修改输入图的现有链接结构和节点属性,而袭击则通过向输入图中注入对抗性节点进行。我们分析了GIA设置下GNS的地形脆弱性,据此我们建议对有效注射攻击进行地形性偏差图形射入攻击(TDGIA)。TGIA首先引入了有表面缺陷的边缘选择战略,以选择与注射者连接的原始节点。然后,它设计了光滑的特征优化目标,以生成注入节点的特征。对大型数据集进行的广泛实验表明,TDGIA在攻击数十个GNN模型时,可以持续和明显地超越各种攻击基线。值得注意的是,在2020年由TDGIA提交的数百项攻击解决方案中,在GNNS结果上出现的最佳性下降。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
专知会员服务
45+阅读 · 2020年10月31日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
46+阅读 · 2020年9月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Capsule Networks教程
全球人工智能
10+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
12+阅读 · 2020年12月10日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
专知会员服务
45+阅读 · 2020年10月31日
【NeurIPS2020-MIT】子图神经网络,Subgraph Neural Networks
专知会员服务
46+阅读 · 2020年9月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Capsule Networks教程
全球人工智能
10+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年8月10日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
12+阅读 · 2020年12月10日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Top
微信扫码咨询专知VIP会员