We revisit the sample average approximation (SAA) approach for general non-convex stochastic programming. We show that applying the SAA approach to problems with expected value equality constraints does not necessarily result in asymptotic optimality guarantees as the number of samples increases. To address this issue, we relax the equality constraints. Then, we prove the asymptotic optimality of the modified SAA approach under mild smoothness and boundedness conditions on the equality constraint functions. Our analysis uses random set theory and concentration inequalities to characterize the approximation error from the sampling procedure. We apply our approach to the problem of stochastic optimal control for nonlinear dynamical systems subject to external disturbances modeled by a Wiener process. We verify our approach on a rocket-powered descent problem and show that our computed solutions allow for significant uncertainty reduction.
翻译:我们重新审视了一般非凝固蒸蒸蒸蒸蒸蒸气程序样本平均近似(SAA)方法。我们表明,对预期价值平等受限的问题采用SAA方法并不一定会导致随着样品数量的增加而出现无药可救的最佳性保证。为了解决这一问题,我们放松了平等限制。然后,我们证明在对平等制约功能的温和和约束条件下,经过修改的SAA方法是无药可救的最佳性。我们的分析使用随机设定的理论和集中不平等来说明抽样程序中的近似错误。我们用我们的方法解决了非线性动态系统在非线性动态系统上受到非线性干扰的最佳控制的问题。我们用维纳程序模型来验证了我们对火箭动力下行问题的处理方法,并表明我们计算出来的解决方案允许大幅降低不确定性。