In this article, continuous Galerkin finite elements are applied to perform full waveform inversion (FWI) for seismic velocity model building. A time-domain FWI approach is detailed that uses meshes composed of variably sized triangular elements to discretize the domain. To resolve both the forward and adjoint-state equations, and to calculate a mesh-independent gradient associated with the FWI process, a fully-explicit, variable higher-order (up to degree $k=5$ in $2$D and $k=3$ in 3D) mass lumping method is used. By adapting the triangular elements to the expected peak source frequency and properties of the wavefield (e.g., local P-wavespeed) and by leveraging higher-order basis functions, the number of degrees-of-freedom necessary to discretize the domain can be reduced. Results from wave simulations and FWIs in both $2$D and 3D highlight our developments and demonstrate the benefits and challenges with using triangular meshes adapted to the material proprieties. Software developments are implemented an open source code built on top of Firedrake, a high-level Python package for the automated solution of partial differential equations using the finite element method.
翻译:在本篇文章中,连续的Galerkin 限制元素被用于实施地震速度模型建筑的全波形转换(FWI) 。 详细使用由不同大小的三角元素组成的中间线将域分离。 要解决前方和联合状态方程式,并计算出与FWI进程相关的网状独立梯度,将采用一个完全清晰的、可变的更高阶梯(最高为2美元=5美元,3D为3K=3美元)大规模包绑法。将三角元素调整为预期的峰值源频率和波场特性(例如,本地P-波速),并利用更高阶基函数,可以减少分离域所需的自由度数量。 2美元 D 和 3D 的波形模拟和FWI 都突出了我们的发展情况,并展示了使用适合材料产权的三角模件的好处和挑战。 软件开发工作是在Fierdrake顶端安装的开放源代码, 并使用高级硬度平方方方程式, 使用高方位的自动平方程式。