In this paper, we use the optimal control methodology to control a flexible, elastic Cosserat rod. An inspiration comes from stereotypical movement patterns in octopus arms, which are observed in a variety of manipulation tasks, such as reaching or fetching. To help uncover the mechanisms underlying these observed morphologies, we outline an optimal control-based framework. A single octopus arm is modeled as a Hamiltonian control system, where the continuum mechanics of the arm is modeled after the Cosserat rod theory, and internal, distributed muscle forces and couples are considered as controls. First order necessary optimality conditions are derived for an optimal control problem formulated for this infinite dimensional system. Solutions to this problem are obtained numerically by an iterative forward-backward algorithm. The state and adjoint equations are solved in a dynamic simulation environment, setting the stage for studying a broader class of optimal control problems. Trajectories that minimize control effort are demonstrated and qualitatively compared with observed behaviors.
翻译:在本文中,我们使用最佳控制方法来控制一个灵活、弹性的Cosserat棒。灵感来自章鱼臂的定型运动模式,在各种操作任务中观察到,如接触或获取。为了帮助发现这些观察到的形态背后的机制,我们概述了一个最佳控制框架。一个单一的章鱼臂以汉密尔顿控制系统为模型,以Coserat 棒理论为模型,将手臂的连续力力力作为模型,将内部、分布式肌肉力和夫妇视为控制。为这个无限的维度系统形成最佳控制问题,首先产生了必要的最佳性条件。这个问题的解决方案是通过数字上的迭代后向算法获得的。状态和连接方程式是在动态模拟环境中解决的,为研究较广泛的最佳控制问题创造了舞台。尽量减少控制努力的轨迹与观察到的行为相比,得到了定性的显示。