Stochastic simulation aims to compute output performance for complex models that lack analytical tractability. To ensure accurate prediction, the model needs to be calibrated and validated against real data. Conventional methods approach these tasks by assessing the model-data match via simple hypothesis tests or distance minimization in an ad hoc fashion, but they can encounter challenges arising from non-identifiability and high dimensionality. In this paper, we investigate a framework to develop calibration schemes that satisfy rigorous frequentist statistical guarantees, via a basic notion that we call eligibility set designed to bypass non-identifiability via a set-based estimation. We investigate a feature extraction-then-aggregation approach to construct these sets that target at multivariate outputs. We demonstrate our methodology on several numerical examples, including an application to calibration of a limit order book market simulator (ABIDES).
翻译:软体模拟旨在计算缺乏分析可感应性的复杂模型的产出性能。为了确保准确的预测,模型需要对照真实数据加以校准和验证。常规方法通过简单的假设测试或以临时方式将模型数据匹配性进行评估,或以距离最小化的方式对模型数据匹配性进行评估,但是它们可能遇到无法识别性和高维度的挑战。在本文中,我们调查一个框架,以制定符合严格常见性统计保证的校准计划,其基本概念是,我们称之为通过基于设定的估算来绕过不可识别性的资格套套。我们调查了一种地貌提取 - - - - - - - - - - - - - - - - - - - - - 聚合方法,以构建这些组合,以多变量产出为目标。我们在若干数字实例上展示了我们的方法,包括应用校准定单书市场模拟器(ABIDES)的校准方法。