In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. We design a meta-algorithm that solves all these problems and whose running time is upper bounded by $2^{O(k)}\cdot n^{O(1)}$, $2^{O(k \log(k))}\cdot n^{O(1)}$, $2^{O(k^2)}\cdot n^{O(1)}$ and $n^{O(k)}$ where $k$ is respectively the clique-width, $\mathbf{Q}$-rank-width, rank-width and maximum induced matching width of a given decomposition. Our approach simplifies and unifies the known algorithms for each of the parameters and its running time matches asymptotically also the running times of the best known algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the $d$-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013] and the rank-based approach introduced in [Bodlaender, Cygan, Kratsch and Nederlof, ICALP 2013]. The results we obtain highlight the importance of the $d$-neighbor equivalence relation on the algorithmic applications of width measures. We also prove that our framework could be useful for $W[1]$-hard problems parameterized by clique-width such as Max Cut and Maximum Minimal Cut. For these latter problems, we obtain $n^{O(k)}$, $n^{O(k)}$ and $n^{2^{O(k)}}$ time algorithms where $k$ is respectively the clique-width, the $\mathbf{Q}$-rank-width and the rank-width of the input graph.


翻译:在本文中, 我们设计了一个框架, 以全球限制( 周期性或连通性) 的一些问题获得有效的算法, 例如连接 Dominate Set、 节点Weighted Steiner 树、 最大引导树、 长引导路径和反馈 Vertex Set。 我们设计了一个元数解算法, 解决所有这些问题, 其运行时间由 2 ⁇ O( k)\cdot n ⁇ O(1)} 美元、 2 ⁇ O( k) kdddn (k) 美元) 美元, 2 ⁇ Odddown 美元, 2 ⁇ Oddodow 美元; 2⁄Oddown 美元, 和 美元- 美元( 美元) 美元( 美元) 美元( 美元), 美元( 美元) 美元( 美元) 美元( 美元) 美元( ) 美元( 美元) 美元( 美元) 美元( ) 美元( 美元( 美元) ( 美元) 美元( 美元) 美元( 美元) 美元( 美元) ( 美元( 美元) ( 美元) ( 美元) ( 美元( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( ) ( ) ( ) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( ) ( ) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (美元) (美元) (美元) (美元( ) ( 美元) (美元( ) ( ) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元) (美元( ) (美元) (美元) (美元) (美元) (美元) (美元

0
下载
关闭预览

相关内容

第47届自动化、语言和编程国际学术讨论会(ICALP 2020)是欧洲理论计算机科学的主要会议和欧洲理论计算机科学协会(EATCS)年会,将于2020年7月8日至12日在中国北京举行。ICARP 2020将有两个传统的轨道A(算法、复杂度和游戏)和B(自动机、逻辑、语义和编程理论)。官网链接:https://econcs.pku.edu.cn/icalp2020/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
0+阅读 · 2021年7月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员