Graph Neural Networks (GNNs) are popular models for graph learning problems. GNNs show strong empirical performance in many practical tasks. However, the theoretical properties have not been completely elucidated. In this paper, we investigate whether GNNs can exploit the graph structure from the perspective of the expressive power of GNNs. In our analysis, we consider graph generation processes that are controlled by hidden node features, which contain all information about the graph structure. A typical example of this framework is kNN graphs constructed from the hidden features. In our main results, we show that GNNs can recover the hidden node features from the input graph alone, even when all node features, including the hidden features themselves and any indirect hints, are unavailable. GNNs can further use the recovered node features for downstream tasks. These results show that GNNs can fully exploit the graph structure by themselves, and in effect, GNNs can use both the hidden and explicit node features for downstream tasks. In the experiments, we confirm the validity of our results by showing that GNNs can accurately recover the hidden features using a GNN architecture built based on our theoretical analysis.


翻译:图形神经网络( GNN) 是用于图形学习问题的流行模型。 GNNs 显示在许多实际任务中具有很强的经验性表现。 但是, 理论属性尚未完全阐明。 在本文中, 我们调查 GNNs 是否可以从GNNs 表达力的角度利用图形结构。 我们的分析认为, 由隐藏节点特性控制的图形生成过程包含关于图形结构的所有信息。 这个框架的一个典型例子是从隐藏的特性中构建的 kNN 图形。 在我们的主要结果中, 我们显示 GNNs 能够单独从输入图形中恢复隐藏的节点特性, 即使所有节点特征, 包括隐藏的特性本身和任何间接提示都不存在。 GNNs 可以进一步利用回收的节点特性执行下游任务。 这些结果显示, GNNNs 可以自己充分利用图形结构, 实际上, GNNs 可以使用隐藏的和明确的节点特性来完成下游任务。 在实验中, 我们确认我们的结果的有效性, 我们通过显示 GNNes 能够使用基于我们理论分析建立的 GNNN 结构来准确恢复隐藏的特性。

6
下载
关闭预览

相关内容

【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
178+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
23+阅读 · 2018年10月24日
VIP会员
相关VIP内容
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
178+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
相关论文
Arxiv
0+阅读 · 2023年3月16日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
23+阅读 · 2018年10月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员