While deep face recognition (FR) systems have shown amazing performance in identification and verification, they also arouse privacy concerns for their excessive surveillance on users, especially for public face images widely spread on social networks. Recently, some studies adopt adversarial examples to protect photos from being identified by unauthorized face recognition systems. However, existing methods of generating adversarial face images suffer from many limitations, such as awkward visual, white-box setting, weak transferability, making them difficult to be applied to protect face privacy in reality. In this paper, we propose adversarial makeup transfer GAN (AMT-GAN), a novel face protection method aiming at constructing adversarial face images that preserve stronger black-box transferability and better visual quality simultaneously. AMT-GAN leverages generative adversarial networks (GAN) to synthesize adversarial face images with makeup transferred from reference images. In particular, we introduce a new regularization module along with a joint training strategy to reconcile the conflicts between the adversarial noises and the cycle consistence loss in makeup transfer, achieving a desirable balance between the attack strength and visual changes. Extensive experiments verify that compared with state of the arts, AMT-GAN can not only preserve a comfortable visual quality, but also achieve a higher attack success rate over commercial FR APIs, including Face++, Aliyun, and Microsoft.


翻译:虽然深刻的面部识别(FR)系统在识别和核实方面表现惊人,但它们也引起了对用户过度监控的隐私问题,特别是公众在社交网络上广泛散布的图像。最近,一些研究采用了对抗性例子,以保护照片不被未经授权的面部识别系统识别。然而,现有的对抗性脸部图像生成方法受到许多限制,如视觉尴尬、白箱设置、可转移性弱,难以应用这些方法来保护现实中的隐私。在本文中,我们提议了对抗性化妆转移GAN(AMT-GAN),这是一种新颖的面部保护方法,旨在同时构建维护更强大的黑箱可转移性和更好的视觉质量的对抗面部图像。AMT-GAN利用基因对抗性对抗性对抗性网络(GAN)将对抗性脸部图像合成从参考图像中传输的化妆品。特别是,我们引入了新的规范化模块,同时采用联合培训战略,以调和对抗性噪声与在现实中保护隐私的冲突,在攻击力力和视觉变化之间实现适当平衡。广泛的实验核查,但与更高攻击状态相比,AM-GAN 的图像率也只能保持一个舒适的图像质量。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【NUS-Xavier教授】生成模型VAE与GAN,69页ppt
专知会员服务
73+阅读 · 2022年4月6日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Invertible Mask Network for Face Privacy-Preserving
Arxiv
0+阅读 · 2022年4月19日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员