Face privacy-preserving is one of the hotspots that arises dramatic interests of research. However, the existing face privacy-preserving methods aim at causing the missing of semantic information of face and cannot preserve the reusability of original facial information. To achieve the naturalness of the processed face and the recoverability of the original protected face, this paper proposes face privacy-preserving method based on Invertible "Mask" Network (IMN). In IMN, we introduce a Mask-net to generate "Mask" face firstly. Then, put the "Mask" face onto the protected face and generate the masked face, in which the masked face is indistinguishable from "Mask" face. Finally, "Mask" face can be put off from the masked face and obtain the recovered face to the authorized users, in which the recovered face is visually indistinguishable from the protected face. The experimental results show that the proposed method can not only effectively protect the privacy of the protected face, but also almost perfectly recover the protected face from the masked face.
翻译:保护面部是引起极大研究兴趣的热点之一。 但是,现有的面部保护方法旨在导致缺少面部语义信息,无法保存原始面部信息的可恢复性。 为了实现被加工面部的自然性和原始受保护面部的可恢复性,本文提出基于不可翻转的“ 面具” 网络(IMN) 的面部保护方法。 在IMN中, 我们引入了面具网, 首先生成“ 面具” 面部。 然后, 将“ 面具” 面部置于受保护面部, 并生成面部面部蒙面, 面部面部面部面部面部面部无法分解。 最后, “ 面具” 面部可以被从面部摘下, 并让授权用户看到被回收的面部面部与受保护面部的可见分辨。 实验结果显示, 提议的方法不仅能够有效保护面部的隐私, 而且还能完全恢复面部保护面部面部的面部面部面部。