Consider the task of estimating a 3-order $n \times n \times n$ tensor from noisy observations of randomly chosen entries in the sparse regime. We introduce a similarity based collaborative filtering algorithm for estimating a tensor from sparse observations and argue that it achieves sample complexity that nearly matches the conjectured computationally efficient lower bound on the sample complexity for the setting of low-rank tensors. Our algorithm uses the matrix obtained from the flattened tensor to compute similarity, and estimates the tensor entries using a nearest neighbor estimator. We prove that the algorithm recovers a finite rank tensor with maximum entry-wise error (MEE) and mean-squared-error (MSE) decaying to $0$ as long as each entry is observed independently with probability $p = \Omega(n^{-3/2 + \kappa})$ for any arbitrarily small $\kappa > 0$. More generally, we establish robustness of the estimator, showing that when arbitrary noise bounded by $\varepsilon \geq 0$ is added to each observation, the estimation error with respect to MEE and MSE degrades by $\text{poly}(\varepsilon)$. Consequently, even if the tensor may not have finite rank but can be approximated within $\varepsilon \geq 0$ by a finite rank tensor, then the estimation error converges to $\text{poly}(\varepsilon)$. Our analysis sheds insight into the conjectured sample complexity lower bound, showing that it matches the connectivity threshold of the graph used by our algorithm for estimating similarity between coordinates.
翻译:考虑从对稀疏制度中随机选择的条目的杂乱观测中估算3-顺序 $\ time n\ time { lators n lators n; 我们采用基于相似的基于协作过滤算法来从稀少的观测中估算一个微粒, 并争论它达到的样本复杂性接近于在低压下设置的取样复杂度上与样本复杂度所预测的低的计算效率。 我们的算法使用从平坦的变压器获得的矩阵来计算相似性, 并使用最近的邻居估测器估算推算 。 我们证明, 算算法回收了有限的等值, 且具有最大进向直径直径的分数( MEE) 和 中度- 中值- error (MSE), 只要每个条目被独立观测到美元= \ Omega (n) = 美元 +\ kappaa} 任何任意小的 $ kappapaa > c can > 0 。 。 。 。 更一般而言, 我们的算算算算算算算算算得更稳性, 当由 $ 美元 美元 美元 内任意的, 当调调调调值时, 以 以 美元 美元 美元 递算算算算算算算算算算值 美元 美元 美元 美元 美元 。