Consider the task of estimating a 3-order $n \times n \times n$ tensor from noisy observations of randomly chosen entries in the sparse regime. We introduce a similarity based collaborative filtering algorithm for estimating a tensor from sparse observations and argue that it achieves sample complexity that nearly matches the conjectured computationally efficient lower bound on the sample complexity for the setting of low-rank tensors. Our algorithm uses the matrix obtained from the flattened tensor to compute similarity, and estimates the tensor entries using a nearest neighbor estimator. We prove that the algorithm recovers a finite rank tensor with maximum entry-wise error (MEE) and mean-squared-error (MSE) decaying to $0$ as long as each entry is observed independently with probability $p = \Omega(n^{-3/2 + \kappa})$ for any arbitrarily small $\kappa > 0$. More generally, we establish robustness of the estimator, showing that when arbitrary noise bounded by $\varepsilon \geq 0$ is added to each observation, the estimation error with respect to MEE and MSE degrades by $\text{poly}(\varepsilon)$. Consequently, even if the tensor may not have finite rank but can be approximated within $\varepsilon \geq 0$ by a finite rank tensor, then the estimation error converges to $\text{poly}(\varepsilon)$. Our analysis sheds insight into the conjectured sample complexity lower bound, showing that it matches the connectivity threshold of the graph used by our algorithm for estimating similarity between coordinates.


翻译:考虑从对稀疏制度中随机选择的条目的杂乱观测中估算3-顺序 $\ time n\ time { lators n lators n; 我们采用基于相似的基于协作过滤算法来从稀少的观测中估算一个微粒, 并争论它达到的样本复杂性接近于在低压下设置的取样复杂度上与样本复杂度所预测的低的计算效率。 我们的算法使用从平坦的变压器获得的矩阵来计算相似性, 并使用最近的邻居估测器估算推算 。 我们证明, 算算法回收了有限的等值, 且具有最大进向直径直径的分数( MEE) 和 中度- 中值- error (MSE), 只要每个条目被独立观测到美元= \ Omega (n) = 美元 +\ kappaa} 任何任意小的 $ kappapaa > c can > 0 。 。 。 。 更一般而言, 我们的算算算算算算算算算得更稳性, 当由 $ 美元 美元 美元 内任意的, 当调调调调值时, 以 以 美元 美元 美元 递算算算算算算算算算算值 美元 美元 美元 美元 美元 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员