Graph database query languages feature expressive, yet computationally expensive pattern matching capabilities. Answering optional query clauses in SPARQL for instance renders the query evaluation problem immediately Pspace-complete. Therefore, light-weight graph pattern matching relations, such as simulation, have recently been investigated as promising alternatives to more expensive query mechanisms like, e.g., computing subgraph isomorphism. Still, graph pattern matching alone lacks expressive query capabilities: all patterns are combined by usual join constructs, where more sophisticated capabilities would be inevitable for making solutions useful to emerging applications. In this paper we bridge this gap by introducing a new dual simulation process operating on SPARQL queries. In addition to supporting the full syntactic structure of SPARQL queries, it features polynomial-time pattern matching to compute an overapproximation of query results from the database. Moreover, to achieve runtimes competing with state-of-the-art database systems, we develop a novel algorithmic solution to dual simulation graph pattern matching, based on a system of inequalities that allows for several optimization heuristics. Finally, we achieve soundness of our process for SPARQL queries including UNION, AND and OPTIONAL operators not restricted to well-designed patterns. Our experiments on synthetic and real-world graph data promise a clear gain for graph database systems when incorporating the new dual simulation techniques. In this supplement paper we present in detail all proofs, discussions of experimental results, and complexity analysis for the original paper "Fast Dual Simulation Processing of Graph Database Queries" included in the Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE 2019), Macau, China.


翻译:图形数据库中的语言具有显眼性, 但却计算出昂贵的模式匹配能力。 例如, 在 SPARQL 中, 回答选题查询条款使查询评估问题立即完成。 因此, 模拟等轻量图形匹配关系最近被调查为较昂贵的查询机制的有希望的替代方法, 例如, 计算子图谱是形态学。 然而, 光图匹配本身缺乏显示查询能力: 所有的图案都是由通常的组合结构结合的, 使解决方案对新兴应用程序有用, 由此必然产生更先进的能力。 在本文中, 我们通过在 SPARQL 查询中引入一个新的双向模拟程序来弥补这一差距。 最后, 除了支持 SPARQL 查询的完整合成结构, 模拟, 它的光量图形匹配模式匹配, 来计算数据库查询结果的过度匹配。 此外, 为了实现与最先进的数据库系统竞争, 我们开发了一种新的模拟图案模型匹配的新算法解决方案, 利用一种不平等系统, 来优化双向图像处理。 最后, 我们实现了对SPARQ 的精确模型分析过程的精确分析,, 我们的精确的精确的模拟模型中, 包括了我们对SPARILL 数据库中的所有的精确分析过程,, 的精确分析, 在SLILILLLLLLLL 的精确分析, 在SLLLL 的精确的精确的精确的精确的精确的精确的模型中, 数据库中,, 我们的精确的精确的精确的计算中, 。

0
下载
关闭预览

相关内容

SPARQL(读作“sparkle”,SPARQL协议和RDF查询语言的首字母缩写)是一种RDF查询语言,也就是说,它是一种语义查询语言,用于数据库检索和操作以资源描述框架(RDF)格式存储的数据。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员