Data-driven approaches coupled with physical knowledge are powerful techniques to model systems. The goal of such models is to efficiently solve for the underlying field by combining measurements with known physical laws. As many systems contain unknown elements, such as missing parameters, noisy data, or incomplete physical laws, this is widely approached as an uncertainty quantification problem. The common techniques to handle all the variables typically depend on the numerical scheme used to approximate the posterior, and it is desirable to have a method which is independent of any such discretization. Information field theory (IFT) provides the tools necessary to perform statistics over fields that are not necessarily Gaussian. We extend IFT to physics-informed IFT (PIFT) by encoding the functional priors with information about the physical laws which describe the field. The posteriors derived from this PIFT remain independent of any numerical scheme and can capture multiple modes, allowing for the solution of problems which are ill-posed. We demonstrate our approach through an analytical example involving the Klein-Gordon equation. We then develop a variant of stochastic gradient Langevin dynamics to draw samples from the joint posterior over the field and model parameters. We apply our method to numerical examples with various degrees of model-form error and to inverse problems involving nonlinear differential equations. As an addendum, the method is equipped with a metric which allows the posterior to automatically quantify model-form uncertainty. Because of this, our numerical experiments show that the method remains robust to even an incorrect representation of the physics given sufficient data. We numerically demonstrate that the method correctly identifies when the physics cannot be trusted, in which case it automatically treats learning the field as a regression problem.


翻译:数据驱动的方法与物理知识相结合是模拟系统的有效技术。此类模型的目标是通过将测量结果与已知的物理法则相结合,高效地求解基础场。由于许多系统包含未知元素,例如缺少参数、噪声数据或不完整的物理法则,因此通常被看作是不确定性量化问题。通常用于处理所有变量的技术,通常依赖于用于近似后验分布的数值方案,并且希望具有独立于任何这样的离散化的方法。信息场理论(IFT)提供了对不一定是高斯分布的场进行统计的工具。我们通过使用描述场的物理定律的信息,将IFT扩展为基于物理学的信息场理论(PIFT)。从这个PIFT派生的后验分布仍然独立于任何数值方案,并且可以捕获多个模式,从而允许解决无解问题。我们通过包含Klein-Gordon方程的解析示例来演示我们的方法。然后,我们开发了一种随机梯度Langevin动力学的变体,以从场和模型参数的联合后验中绘制样本。我们将我们的方法应用于具有不同程度的模型形式误差和涉及非线性微分方程的反问题的数值示例。由于该方法配备了一种度量方式,因此后验可以自动量化模型形式的不确定性。由于这一点,我们的数值实验表明,即使给出了足够的数据,该方法在存在错误的物理表示的情况下仍保持稳健。我们在数值上证明,该方法可以正确地识别物理学不能信任的情况,在这种情况下,它自动将学习场视为回归问题。

0
下载
关闭预览

相关内容

Nat. Commun. | 深度学习将大分子分解为独立的马尔可夫域
专知会员服务
16+阅读 · 2022年12月9日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
Nat. Commun. | 深度学习将大分子分解为独立的马尔可夫域
专知会员服务
16+阅读 · 2022年12月9日
相关资讯
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员