This paper introduces a novel generator called Perturbation-Assisted Sample Synthesis (PASS), designed for drawing reliable conclusions from complex data, especially when using advanced modeling techniques like deep neural networks. PASS utilizes perturbation to generate synthetic data that closely mirrors the distribution of raw data, encompassing numerical and unstructured data types such as gene expression, images, and text. By estimating the data-generating distribution and leveraging large pre-trained generative models, PASS enhances estimation accuracy, providing an estimated distribution of any statistic through Monte Carlo experiments. Building on PASS, we propose a generative inference framework called Perturbation-Assisted Inference (PAI), which offers a statistical guarantee of validity. In pivotal inference, PAI enables accurate conclusions without knowing a pivotal's distribution as in simulations, even with limited data. In non-pivotal situations, we train PASS using an independent holdout sample, resulting in credible conclusions. To showcase PAI's capability in tackling complex problems, we highlight its applications in three domains: image synthesis inference, sentiment word inference, and multimodal inference via stable diffusion.
翻译:暂无翻译