Vision-Language models (VLMs) that use contrastive language-image pre-training have shown promising zero-shot classification performance. However, their performance on imbalanced dataset is relatively poor, where the distribution of classes in the training dataset is skewed, leading to poor performance in predicting minority classes. For instance, CLIP achieved only 5% accuracy on the iNaturalist18 dataset. We propose to add a lightweight decoder to VLMs to avoid OOM (out of memory) problem caused by large number of classes and capture nuanced features for tail classes. Then, we explore improvements of VLMs using prompt tuning, fine-tuning, and incorporating imbalanced algorithms such as Focal Loss, Balanced SoftMax and Distribution Alignment. Experiments demonstrate that the performance of VLMs can be further boosted when used with decoder and imbalanced methods. Specifically, our improved VLMs significantly outperforms zero-shot classification by an average accuracy of 6.58%, 69.82%, and 6.17%, on ImageNet-LT, iNaturalist18, and Places-LT, respectively. We further analyze the influence of pre-training data size, backbones, and training cost. Our study highlights the significance of imbalanced learning algorithms in face of VLMs pre-trained by huge data. We release our code at https://github.com/Imbalance-VLM/Imbalance-VLM.


翻译:视觉语言模型(Vision-Language models, VLMs)基于对比语言-图像预训练,在零样本分类任务中表现出极大的性能优势。 然而,它们在不平衡数据集上的表现相对较差,即训练集中的类别分布不均,导致对少数类的分类性能差。例如,CLIP在iNaturalist18数据集上仅实现了5%的准确率。因此,我们提出在VLMs中加入轻量级的解码器,以避免由大量类别引起的OOM(内存不足)问题,同时可以捕捉到较为微妙的小类别特征。然后,我们探讨了使用提示调整、微调以及结合不平衡学习方法(如Focal Loss,Balanced SoftMax和Distribution Alignment)进行VLMs改进的方法。实验证明,在加入解码器和不平衡算法的帮助下,我们改进的VLMs在ImageNet-LT、iNaturalist18和Places-LT上平均准确率分别比零样本分类高出6.58%、69.82%和6.17%。我们还进一步分析了预训练数据大小、主干网络和训练成本的影响。本文强调了在使用大规模预训练数据的VLMs中,不平衡学习算法的重要性。我们将我们的代码发布在https://github.com/Imbalance-VLM/Imbalance-VLM。

0
下载
关闭预览

相关内容

【NAACL2022】自然语言处理的对比数据与学习
专知会员服务
45+阅读 · 2022年7月10日
【南洋理工-CVPR2022】视觉语言模型的条件提示学习
专知会员服务
32+阅读 · 2022年3月13日
【CVPR 2022】视觉提示调整(VPT),Vision Prompt Tuning
专知会员服务
31+阅读 · 2022年3月12日
【CVPR2021】用Transformers无监督预训练进行目标检测
专知会员服务
57+阅读 · 2021年3月3日
【ACL2020-Facebook AI】大规模无监督跨语言表示学习
专知会员服务
33+阅读 · 2020年4月5日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
27+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月24日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
27+阅读 · 2021年11月11日
VIP会员
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
27+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员