The recent progress of CNN has dramatically improved face alignment performance. However, few works have paid attention to the error-bias with respect to error distribution of facial landmarks. In this paper, we investigate the error-bias issue in face alignment, where the distributions of landmark errors tend to spread along the tangent line to landmark curves. This error-bias is not trivial since it is closely connected to the ambiguous landmark labeling task. Inspired by this observation, we seek a way to leverage the error-bias property for better convergence of CNN model. To this end, we propose anisotropic direction loss (ADL) and anisotropic attention module (AAM) for coordinate and heatmap regression, respectively. ADL imposes strong binding force in normal direction for each landmark point on facial boundaries. On the other hand, AAM is an attention module which can get anisotropic attention mask focusing on the region of point and its local edge connected by adjacent points, it has a stronger response in tangent than in normal, which means relaxed constraints in the tangent. These two methods work in a complementary manner to learn both facial structures and texture details. Finally, we integrate them into an optimized end-to-end training pipeline named ADNet. Our ADNet achieves state-of-the-art results on 300W, WFLW and COFW datasets, which demonstrates the effectiveness and robustness.


翻译:CNN最近的进展大大改善了面部校正功能。 然而, 很少有工作关注面部标志分布错误的错误偏差。 在本文中, 我们调查面部校正错误偏差问题, 面部校正的误差分布倾向于沿着正切线向标志曲线扩散。 这种误差偏差并非微不足道, 因为它与标志标志性标记任务密切相关。 受此观察的启发, 我们想方设法利用误差偏差属性, 使CNN模式更好地趋同。 为此, 我们建议对面部标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志性标志

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员