Treatment effects vary across different patients and estimation of this variability is important for clinical decisions. The aim is to develop a model to estimate the benefit of alternative treatment options for individual patients. Hence, we developed a two-stage prediction model for heterogeneous treatment effects, by combining prognosis research and network meta-analysis methods when individual patient data is available. In a first stage, we develop a prognostic model and we predict the baseline risk of the outcome. In the second stage, we use this baseline risk score from the first stage as a single prognostic factor and effect modifier in a network meta-regression model. We apply the approach to a network meta-analysis of three randomized clinical trials comparing the relapse rate in Natalizumab, Glatiramer Acetate and Dimethyl Fumarate including 3590 patients diagnosed with relapsing-remitting multiple sclerosis. We find that the baseline risk score modifies the relative and absolute treatment effects. Several patient characteristics such as age and disability status impact on the baseline risk of relapse, and this in turn moderates the benefit that may be expected for each of the treatments. For high-risk patients, the treatment that minimizes the risk to relapse in two years is Natalizumab, whereas for low-risk patients Dimethyl Fumarate Fumarate might be a better option. Our approach can be easily extended to all outcomes of interest and has the potential to inform a personalised treatment approach.
翻译:不同患者的治疗效果各不相同,估计这种差异性对于临床决策很重要。目的是开发一个模型来估计为个别患者提供替代治疗方案的益处。因此,我们开发了一种用于不同治疗效果的两阶段预测模型,将预测研究和网络元分析方法结合起来,供个别患者提供数据时使用。在第一阶段,我们开发了一个预测模型,并预测结果的基线风险。在第二阶段,我们使用第一阶段的这一基线风险评分作为单一的预测因素,并用于网络元反回归模型中的影响修正器。我们采用这一方法,对Natalizumab、Glatiramer Acetate和Dimet Fumarate的三次随机临床试验进行网络元分析,比较复发率,包括预测研究和网络元分析方法。在第一阶段,我们开发了一个预测模型模型模型模型模型,预测结果的基线评分可以改变相对和绝对的治疗效果。一些病人特征,例如年龄和残疾状况对网络复发基线风险的影响,这反过来可以调节每一次治疗的预期好处。对于每一次治疗的复发率而言,最有可能使每个患者的复发性治疗都处于低风险期,而后期。对于后期的治疗而言,最有可能是低风险期。对低风险期的治疗具有后期。对低风险期进行。对低风险期的治疗的治疗具有两年进行最深期。对低风险率。