MetaDL Challenge 2020 focused on image classification tasks in few-shot settings. This paper describes second best submission in the competition. Our meta learning approach modifies the distribution of classes in a latent space produced by a backbone network for each class in order to better follow the Gaussian distribution. After this operation which we call Latent Space Transform algorithm, centers of classes are further aligned in an iterative fashion of the Expectation Maximisation algorithm to utilize information in unlabeled data that are often provided on top of few labelled instances. For this task, we utilize optimal transport mapping using the Sinkhorn algorithm. Our experiments show that this approach outperforms previous works as well as other variants of the algorithm, using K-Nearest Neighbour algorithm, Gaussian Mixture Models, etc.
翻译:MetaDL 挑战 2020 侧重于几发环境中的图像分类任务。 本文描述了竞争中的第二最佳提交方式。 我们的元学习方法改变了每个类中由主干网络产生的潜在空间中的班级分布, 以更好地跟踪高斯分布。 在这次我们称之为“ 冷淡空间变换算法” 的操作之后, 班级中心进一步以“ 期望最大化算法” 的迭接方式对齐, 以便利用通常在少数标注实例中提供的未标数据中的信息。 对于这项任务, 我们使用Sinkhorn 算法进行最佳的运输映像。 我们的实验显示, 这个方法比先前的工程以及其他算法变异, 使用了 K- Nearest 邻居算法、 Gaussian Mixtures 模型等 。