The paper considers a Cox process where the stochastic intensity function for the Poisson data model is itself a non-homogeneous Poisson process. We show that it is possible to obtain the marginal data process, namely a non-homogeneous count process exhibiting over-dispersion. While the intensity function is non-decreasing, it is straightforward to transform the data so that a non-decreasing intensity function is appropriate. We focus on a time series for arrival times of a process and, in particular, we are able to find an exact form for the marginal probability for the observed data, so allowing for an easy to implement estimation algorithm via direct calculations of the likelihood function.
翻译:本文考虑一个考克斯过程,其中泊松数据模型的随机强度函数本身是一个非齐次泊松过程。我们展示了可以获得边际数据过程的可能性,即属于过度分散的非齐次计数过程。虽然强度函数是非递减的,但是可以轻松地转换数据,以使非递减的强度函数合适。我们专注于到达时间的时间序列,特别是我们能够找到观察到数据的边际概率的精确形式,从而通过直接计算似然函数来实现易于实施的估计算法。