Community is a fundamental and critical characteristic of an undirected social network, making community detection be a vital yet thorny issue in network representation learning. A symmetric and non-negative matrix factorization (SNMF) model is frequently adopted to address this issue owing to its great interpretability and scalability. However, it adopts a single latent factor matrix to represent an undirected network for precisely representing its symmetry, which leads to loss of representation learning ability due to the reduced latent space. Motivated by this discovery, this paper proposes a novel Constraints Fusion-induced Symmetric Nonnegative Matrix Factorization (CFS) model that adopts three-fold ideas: a) Representing a target undirected network with multiple latent factor matrices, thus preserving its representation learning capacity; b) Incorporating a symmetry-regularizer that preserves the symmetry of the learnt low-rank approximation to the adjacency matrix into the loss function, thus making the resultant detector well-aware of the target network's symmetry; and c) Introducing a graph-regularizer that preserves local invariance of the network's intrinsic geometry, thus making the achieved detector well-aware of community structure within the target network. Extensively empirical studies on eight real-world social networks from industrial applications demonstrate that the proposed CFS model significantly outperforms state-of-the-art models in achieving highly-accurate community detection results.


翻译:社区是非定向社会网络的基本和关键特征,使社区探测成为网络代表性学习中一个重要而又棘手的问题。由于对称和非负矩阵因子化模式的可解释性和可缩缩缩性,因此经常采用对称和非负矩阵因子化模型(SNMF)来解决这一问题。然而,社区采用单一潜在要素矩阵来代表一个非定向网络,以精确地代表其对称性,从而导致因潜在空间减少而丧失代表性学习能力。受这一发现的影响,本文件提出了一个新的制约聚合因子引起的非对应矩阵因子化(CFS)模型,采用三重想法:(a) 代表一个目标非定向网络,使用多个潜在因子因子矩阵,从而保持其代表性学习能力;(b) 采用一个对称因子矩阵,以保持所学的低级别与相邻关系矩阵的对称性,从而导致损失功能的匹配能力丧失。因此,使结果检测器能很好地意识到目标网络的匹配性非对称性矩阵化(CFSFS)模型,采用采用三重概念化模型,从而在网络内部测试系统化系统化系统化网络,从而大大维护了本地的系统化网络。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
54+阅读 · 2022年1月1日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员