Diurnal temperature range is an important variable in climate science that can provide information regarding climate variability and climate change. Changes in diurnal temperature range can have implications for hydrology, human health and ecology, among others. Yet, the statistical literature on modelling diurnal temperature range is lacking. In this paper we propose to model the distribution of diurnal temperature range using the five-parameter lambda (FPL) distribution. Additionally, in order to model diurnal temperature range with explanatory variables, we propose a distributional quantile regression model that combines quantile regression with marginal modelling using the FPL distribution. Inference is performed using the method of quantiles. The models are fitted to 30 years of daily observations of diurnal temperature range from 112 weather stations in the southern part of Norway. The flexible FPL distribution shows great promise as a model for diurnal temperature range, and performs well against competing models. The distributional quantile regression model is fitted to diurnal temperature range data using geographic, orographic and climatological explanatory variables. It performs well and captures much of the spatial variation in the distribution of diurnal temperature range in Norway.
翻译:日光温度范围是气候科学的一个重要变量,可以提供有关气候多变性和气候变化的信息。日光温度范围的变化可能会对水文学、人类健康和生态等产生影响。然而,缺乏关于二极温范围建模的统计文献。在本文件中,我们提议使用五分制的羊羔(FPL)分布模型模拟二极温范围的分布。此外,为了用解释变量模拟二极温范围,我们提议一种分布式孔径回归模型,将四分位回归与使用FPL分布的边际模型相结合。推断是使用量衡算法进行的。这些模型安装了30年挪威南部112个气象站每日对二极温范围的观测。灵活的FPL分布展示了极光温度范围模型的巨大前景,并与相竞争的模型表现良好。分布式孔径回归模型与使用地理、地理和气候解释变量的二极温范围数据相结合。它很好地测量和捕捉到挪威境内二极温分布的空间变化。