Inspired by the path coordination problem arising from robo-taxis, warehouse management, and mixed-vehicle routing problems, we model a group of heterogeneous players responding to stochastic demands as a congestion game under Markov decision process dynamics. Players share a common state-action space but have unique transition dynamics, and each player's unique cost is a {function} of the joint state-action probability distribution. For a class of player cost functions, we formulate the player-specific optimization problem, prove the equivalence between the Nash equilibrium and the solution of a potential minimization problem, and derive dynamic programming approaches to solve the Nash equilibrium. We apply this game to model multi-agent path coordination and introduce congestion-based cost functions that enable players to complete individual tasks while avoiding congestion with their opponents. Finally, we present a learning algorithm for finding the Nash equilibrium that has linear complexity in the number of players. We demonstrate our game model on a multi-robot warehouse \change{path coordination problem}, in which robots autonomously retrieve and deliver packages while avoiding congested paths.


翻译:受Robo-taxis、仓库管理和混合车辆路由问题引起的路径协调问题的影响,我们以马可夫决定程序动态下的阻塞游戏的形式,将一组对随机需求作出反应的不同角色模拟成一组。玩家共享一个共同的州-行动空间,但具有独特的过渡动态,每个玩家的独特成本是州-行动联合概率分布的{功能}。对于一组玩家成本功能,我们设计了播放器特有的优化问题,证明了纳什平衡与潜在最小化问题的解决方案之间的等同性,并提出了解决纳什平衡的动态编程方法。我们应用了这个游戏来模拟多剂路径协调,并引入了基于拥挤的成本功能,使玩家既能完成个人任务,同时又避免与对手的拥堵。最后,我们提出了一个学习算法,以找到在玩家数量上具有线性复杂性的纳什平衡。我们展示了多机器人仓库的游戏模型 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月26日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
84+阅读 · 2022年7月16日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员