Federated Learning (FL) is a nascent decentralized learning framework under which a massive collection of heterogeneous clients collaboratively train a model without revealing their local data. Scarce communication, privacy leakage, and Byzantine attacks are the key bottlenecks of system scalability. In this paper, we focus on communication-efficient distributed (stochastic) gradient descent for non-convex optimization, a driving force of FL. We propose two algorithms, named {\em Adaptive Stochastic Sign SGD (Ada-StoSign)} and {\em $\beta$-Stochastic Sign SGD ($\beta$-StoSign)}, each of which compresses the local gradients into bit vectors. To handle unbounded gradients, Ada-StoSign uses a novel norm tracking function that adaptively adjusts a coarse estimation on the $\ell_{\infty}$ of the local gradients - a key parameter used in gradient compression. We show that Ada-StoSign converges in expectation with a rate $O(\log T/\sqrt{T} + 1/\sqrt{M})$, where $M$ is the number of clients. To the best of our knowledge, when $M$ is sufficiently large, Ada-StoSign outperforms the state-of-the-art sign-based method whose convergence rate is $O(T^{-1/4})$. Under bounded gradient assumption, $\beta$-StoSign achieves quantifiable Byzantine resilience and privacy assurances, and works with partial client participation and mini-batch gradients which could be unbounded. We corroborate and complement our theories by experiments on MNIST and CIFAR-10 datasets.


翻译:联邦学习联合会(FL)是一个新生的分散学习框架,在此框架下,大量不同客户在不披露本地数据的情况下合作培训模型。 疏漏通信、隐私泄漏和拜占庭袭击是系统可缩缩缩的关键瓶颈。 在本文中,我们侧重于通信高效分布(随机)梯度下降,用于非cavex优化,这是FL的驱动力。 我们建议使用两个算法,名为 & em- 适应性信号 SGD (Ada-StoSign) 和 $@beta$- stochest 信号SGD (\beeta$- StoStoSign) 模型。 每个都将本地梯度缩缩缩成比矢量。 要处理无限制的梯度, Ada-StoSign使用一个新的规范跟踪功能, 调整对本地梯度$@ellivtell 的粗估估估值, 我们的缩略缩缩略缩缩缩缩缩缩略图, 也就是我们以美元计为美元的货币的基数。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月12日
Arxiv
0+阅读 · 2023年4月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员