In static graphs, the betweenness centrality of a graph vertex measures how many times this vertex is part of a shortest path between any two graph vertices. Betweenness centrality is efficiently computable and it is a fundamental tool in network science. Continuing and extending previous work, we study the efficient computability of betweenness centrality in temporal graphs (graphs with fixed vertex set but time-varying arc sets). Unlike in the static case, there are numerous natural notions of being a "shortest" temporal path (walk). Depending on which notion is used, it was already observed that the problem is #P-hard in some cases while polynomial-time solvable in others. In this conceptual work, we contribute towards classifying what a "shortest path (walk) concept" has to fulfill in order to gain polynomial-time computability of temporal betweenness centrality.
翻译:在静态图形中,图形顶端中心之间的中间点测量这个顶点是两个图形顶点之间最短路径的一部分,两次顶点之间的中间点是多少倍。 中间点是有效的可比较工具, 是网络科学中的一个基本工具。 继续并扩展先前的工作, 我们研究时间图( 固定顶点设置但时间变化弧数组的图表) 中中间点之间的有效可比较性。 与静态不同的是, 有许多自然概念是“ 浅度” 时间路径( 行走 ) 。 根据使用的概念, 人们已经注意到, 在某些情况下, 问题在于 # P- 硬度, 而其它情况下, 多边- 时间可溶解 。 在这种概念工作中, 我们致力于对“ 浅度路径( 行走) 概念必须实现的哪些内容进行分类, 以便获得时间间隔中心之间的多时的可比较性比较性 。