Consider multiple experts with overlapping expertise working on a classification problem under uncertain input. What constitutes a consistent set of opinions? How can we predict the opinions of experts on missing sub-domains? In this paper, we define a framework of to analyze this problem, termed "expert graphs." In an expert graph, vertices represent classes and edges represent binary opinions on the topics of their vertices. We derive necessary conditions for expert graph validity and use them to create "synthetic experts" which describe opinions consistent with the observed opinions of other experts. We show this framework to be equivalent to the well-studied linear ordering polytope. We show our conditions are not sufficient for describing all expert graphs on cliques, but are sufficient for cycles.
翻译:考虑在不确定的投入下就分类问题开展工作的具有重叠专长的多位专家。 什么是一致的意见?我们如何预测专家对缺失子域的意见?在本文件中,我们定义了分析这一问题的框架,称为“专家图 ” 。在专家图中,顶点代表了各个类别和边缘代表了对其顶点主题的二进制意见。我们得出了专家图有效性的必要条件,并用它们来创建“合成专家”来描述与其他专家观察到的意见一致的意见。我们展示了这个框架等同于经过充分研究的线性线性线性定聚点。我们展示了我们的条件不足以描述所有关于板块的专家图,但足以用于周期。