This paper introduces Physics-Informed Deep Equilibrium Models (PIDEQs) for solving initial value problems (IVPs) of ordinary differential equations (ODEs). Leveraging recent advancements in deep equilibrium models (DEQs) and physics-informed neural networks (PINNs), PIDEQs combine the implicit output representation of DEQs with physics-informed training techniques. We validate PIDEQs using the Van der Pol oscillator as a benchmark problem, demonstrating their efficiency and effectiveness in solving IVPs. Our analysis includes key hyperparameter considerations for optimizing PIDEQ performance. By bridging deep learning and physics-based modeling, this work advances computational techniques for solving IVPs, with implications for scientific computing and engineering applications.
翻译:暂无翻译