Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.
翻译:分布式学习算法旨在利用在用户设备中储存的分布式和多种数据,通过在参与设备中进行培训,定期将其当地模型参数汇集到一个全球模型中,从而学习一种全球现象。 联邦学习是一个很有希望的模式,在汇集参数之前,可以在参与者设备中扩大当地培训,提供更好的通信效率。 但是,在参与者数据高度偏斜(即非IID)的情况下,当地模型可以过度使用当地数据,导致全球运行模式的运行效率低下。在本文中,我们首先表明性能下降的主要原因是用户设备各班之间的分布与全球分布之间的加权距离。然后,为了应对这一挑战,我们利用边际计算模式设计一个等级学习系统,在用户尖端层和边宽层的联动变异学中,在用户数据结构中,我们正式化和优化了用户对端分配的问题,使边缘数据分布变得相似(i.e.,接近IID),从而增强用户设备与全球分布的平衡性差。然后,我们利用边际计算模型来设计一个更精确化的多重实际数据配置模型。