We propose a finite difference method to solve Maxwell's equations in time domain in the presence of a perfect electric conductor that impedes the propagations of electromagnetic waves. Our method is a modification of the existing approach by Zou and Liu [36], from a locally perturbed body-fitted grid to a uniform orthogonal one for complicated PEC objects. Similar to their work we extrapolate ghost point values by exploiting the level set function of the interface and the PDE-based extension technique, which allows us to circumvent scrutinizing local geometries of the interface. We stipulate a mild requirement on the accuracy of our extrapolation that the ghost values need only be locally second order accurate. Nevertheless the resulting accuracy of our method is second order thanks to the application of back and forth error correction and compensation, which also relaxes CFL conditions. We demonstrate the effectiveness of our approach with some numerical examples.
翻译:我们建议了一种有限的差异法,在时域内解决Maxwell的方程式,而时域内有一个完美的电导器,阻碍电磁波的传播。我们的方法是修改Zou和Liu [36]的现有方法,从一个局部扰动体装配的网格改为一个对复杂的PEC物体的统一的正方形网格。类似于他们的工作,我们通过利用接口和基于PDE的扩展技术的定级功能来推断鬼点值,这使我们能够绕过对界面当地地貌的仔细检查。我们用一些数字例子来表明我们的方法的有效性,我们用一些数字例子来证明我们的方法的有效性,我们的方法的准确性仅需要本地的第二顺序。然而,由于对错误的纠正和补偿的应用,我们的方法的准确性是第二顺序,这也降低了CFL的条件。我们用一些数字例子来证明我们的方法的有效性。