We propose semi- and non-parametric methods to estimate conditional interventional indirect effects in the setting of two discrete mediators whose causal ordering is unknown. Average interventional indirect effects have been shown to decompose an average treatment effect into a direct effect and interventional indirect effects that quantify effects of hypothetical interventions on mediator distributions. Yet these effects may be heterogeneous across the covariate distribution. We therefore consider the problem of estimating these effects at particular points. We first propose an influence-function based estimator of the projection of the conditional effects onto a working model, and show that under some conditions we can achieve root-n consistent and asymptotically normal estimates of this parameter. Second, we propose a fully non-parametric approach to estimation and show the conditions where this approach can achieve oracle rates of convergence. Finally, we propose a sensitivity analysis for the conditional effects in the presence of mediator-outcome confounding given a bounded outcome. We propose estimating bounds on the conditional effects using these same methods, and show that these results easily extend to allow for influence-function based estimates of the bounds on the average effects. We conclude by demonstrating our methods to examine heterogeneous mediated effects with respect to the effect of COVID-19 vaccinations on depression via social isolation and worries about health during February 2021.


翻译:我们建议采用半和非参数方法,在设置两个互不关联的调解人时估计有条件的干预间接影响,其因果关系不明; 平均干预间接影响显示,平均治疗影响分解成一种直接效果和干预间接影响,以量化假设干预对调解人分配的影响; 然而,这些影响在共变分布上可能各有差异; 因此,我们考虑在特定地点估计这些影响的问题; 我们首先提出基于影响力的、基于对有条件影响预测的估测方法,将其推到工作模式, 并表明在某些条件下,我们能够对这个参数作出自下而上和暂时的正常估计; 第二,我们提出完全不单数的估算方法,并表明这一方法能够达到趋同率的条件; 最后,我们提议对调解人-异化结果存在时的有条件影响进行敏感性分析; 我们提出使用这些方法来估计有条件影响,并表明这些结果很容易扩大,以便根据对平均影响作出影响的估计。 我们提出完全非单数的估算方法,并表明这一方法能够实现趋同; 最后,我们提出在2月20-19年通过隔绝性媒体检验C-21年的免疫效应,我们通过隔绝性防办法,对20-21年的防压压。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月21日
Arxiv
0+阅读 · 2022年11月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员