Parameter learning for high-dimensional, partially observed, and nonlinear stochastic processes is a methodological challenge. Spatiotemporal disease transmission systems provide examples of such processes giving rise to open inference problems. We propose the iterated block particle filter (IBPF) algorithm for learning high-dimensional parameters over graphical state space models with general state spaces, measures, transition densities and graph structure. Theoretical performance guarantees are obtained on beating the curse of dimensionality (COD), algorithm convergence, and likelihood maximization. Experiments on a highly nonlinear and non-Gaussian spatiotemporal model for measles transmission reveal that the iterated ensemble Kalman filter algorithm (Li et al. (2020)) is ineffective and the iterated filtering algorithm (Ionides et al. (2015)) suffers from the COD, while our IBPF algorithm beats COD consistently across various experiments with different metrics.
翻译:----
高维、部分观测和非线性随机过程的参数学习是一项方法学上的挑战。时空疾病传播系统提供了这样的过程示例,产生了开放的推断问题。我们提出了迭代块粒子滤波器(IBPF)算法,用于在具有一般状态空间、度量、转移密度和图结构的图形状态空间模型上学习高维参数。我们获得了理论性能保证,可以击败维数灾难(COD,Curse of Dimensionality),算法收敛性和似然度最大化。针对高度非线性和非高斯麻疹传播的时空模型进行的实验表明,迭代集合卡尔曼滤波器算法(Li等人(2020))无效,而迭代滤波算法(Ionides等人(2015))受到COD的影响,而我们的IBPF算法在不同的实验中始终可以使用不同的指标稳定地击败COD。