Mobile robots in unstructured, mapless environments must rely on an obstacle avoidance module to navigate safely. The standard avoidance techniques estimate the locations of obstacles with respect to the robot but are unaware of the obstacles' identities. Consequently, the robot cannot take advantage of semantic information about obstacles when making decisions about how to navigate. We propose an obstacle avoidance module that combines visual instance segmentation with a depth map to classify and localize objects in the scene. The system avoids obstacles differentially, based on the identity of the objects: for example, the system is more cautious in response to unpredictable objects such as humans. The system can also navigate closer to harmless obstacles and ignore obstacles that pose no collision danger, enabling it to navigate more efficiently. We validate our approach in two simulated environments: one terrestrial and one underwater. Results indicate that our approach is feasible and can enable more efficient navigation strategies.
翻译:无结构、无地图环境中的移动机器人必须依靠避免障碍模块安全导航。 标准避免技术估计了机器人的障碍位置, 但却不知道障碍特性。 因此, 机器人在决定如何导航时无法利用关于障碍的语义信息。 我们提议了一个避免障碍模块, 将视觉实例分解与深图结合起来, 以在现场对物体进行分类和定位。 该系统根据物体的特性, 以不同方式避免障碍: 例如, 系统在应对人类等无法预测的物体时更加谨慎。 系统还可以更接近无害障碍, 忽视没有碰撞危险的障碍, 使其能够更有效地航行。 我们在两个模拟环境中验证了我们的方法: 一个陆地环境, 一个水下环境。 结果显示, 我们的方法是可行的, 并且能够使导航策略更加有效。