Keypoint detection is an essential building block for many robotic applications like motion capture and pose estimation. Historically, keypoints are detected using uniquely engineered markers such as checkerboards or fiducials. More recently, deep learning methods have been explored as they have the ability to detect user-defined keypoints in a marker-less manner. However, different manually selected keypoints can have uneven performance when it comes to detection and localization. An example of this can be found on symmetric robotic tools where DNN detectors cannot solve the correspondence problem correctly. In this work, we propose a new and autonomous way to define the keypoint locations that overcomes these challenges. The approach involves finding the optimal set of keypoints on robotic manipulators for robust visual detection and localization. Using a robotic simulator as a medium, our algorithm utilizes synthetic data for DNN training, and the proposed algorithm is used to optimize the selection of keypoints through an iterative approach. The results show that when using the optimized keypoints, the detection performance of the DNNs improved significantly. We further use the optimized keypoints for real robotic applications by using domain randomization to bridge the reality gap between the simulator and the physical world. The physical world experiments show how the proposed method can be applied to the wide-breadth of robotic applications that require visual feedback, such as camera-to-robot calibration, robotic tool tracking, and end-effector pose estimation.


翻译:关键点检测是许多机器人应用(如运动抓捕和估计)的基本构件。 历史上, 关键点是使用独特的设计标记( 如检查板或检查板或显示仪等)来检测。 最近, 探索了深层次的学习方法, 因为它们有能力以无标记的方式检测用户定义的键点。 然而, 不同的人工选择的键点在检测和定位方面表现不一。 可以在对称机器人工具中找到一个实例, 在那里, DNN 检测器无法正确解决对应问题。 在这项工作中, 我们提出一种新的自主方法来定义克服这些挑战的关键点位置。 这种方法包括寻找机器人操作器的最佳关键点, 以便进行稳健的视觉检测和本地化。 使用机械机械模拟器作为媒介, 我们的算法将合成数据用于 DNNN培训, 拟议的算法用于通过迭代方法优化关键点的选择。 结果表明, 当使用最优化的键点时, DNNP的检测功能会大大改善。 我们进一步使用最优化的视觉定位点, 来进行真正的机器人的物理定位, 。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
【NeurIPS 2020】一种端到端全自由度抓取姿态估计网络简介
专知会员服务
20+阅读 · 2020年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
已删除
将门创投
4+阅读 · 2017年11月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关VIP内容
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
【NeurIPS 2020】一种端到端全自由度抓取姿态估计网络简介
专知会员服务
20+阅读 · 2020年10月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
已删除
将门创投
4+阅读 · 2017年11月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员