With the outbreak of today's streaming data, the sequential recommendation is a promising solution to achieve time-aware personalized modeling. It aims to infer the next interacted item of a given user based on the history item sequence. Some recent works tend to improve the sequential recommendation via random masking on the history item so as to generate self-supervised signals. But such approaches will indeed result in sparser item sequence and unreliable signals. Besides, the existing sequential recommendation models are only user-centric, i.e., based on the historical items by chronological order to predict the probability of candidate items, which ignores whether the items from a provider can be successfully recommended. Such user-centric recommendation will make it impossible for the provider to expose their new items and result in popular bias. In this paper, we propose a novel Dual Contrastive Network (DCN) to generate ground-truth self-supervised signals for sequential recommendation by auxiliary user-sequence from an item-centric perspective. Specifically, we propose dual representation contrastive learning to refine the representation learning by minimizing the Euclidean distance between the representations of a given user/item and history items/users of them. Before the second contrastive learning module, we perform the next user prediction to capture the trends of items preferred by certain types of users and provide personalized exploration opportunities for item providers. Finally, we further propose dual interest contrastive learning to self-supervise the dynamic interest from the next item/user prediction and static interest of matching probability. Experiments on four benchmark datasets verify the effectiveness of our proposed method. Further ablation study also illustrates the boosting effect of the proposed components upon different sequential models.


翻译:随着今天流媒体数据的爆发,顺序推荐是实现时间感知个性化建模的一种有前途的解决方案。它旨在根据历史项目序列推断给定用户的下一个交互项目。一些最近的研究倾向于通过对历史项目进行随机屏蔽来改进顺序推荐,以生成自我监督的信号。但这种方法实际上将导致更稀疏的项目序列和不可靠的信号。此外,现有的顺序推荐模型仅是基于用户,即根据历史项目按时间顺序预测候选项目的概率,它忽略了来自供应商的项目是否可以成功推荐。这种以用户为中心的推荐将使供应商无法推出他们的新项目,并导致受欢迎的偏见。在本文中,我们提出了一种新颖的双重对比网络(DCN)来生成基于物品中心的辅助用户序列的顺序推荐的地面实况自我监督信号。具体而言,我们提出了双重表示对比学习来通过最小化一定用户/物品的表示与它们的历史项/用户之间的欧几里得距离来改进表示学习。在第二个对比学习模块之前,我们进行下一个用户预测,以捕捉由某些类型的用户更喜欢的项目趋势,并为项目提供者提供个性化探测机会。最后,我们进一步提出了双重兴趣对比学习来自我监督下一个项目/用户预测的动态兴趣和匹配概率的静态兴趣。在四个基准数据集上的实验验证了我们提出的方法的有效性。进一步的消融研究也说明了所提出的组件对不同的顺序模型的增强效果。

0
下载
关闭预览

相关内容

通过潜在空间的对比损失最大限度地提高相同数据样本的不同扩充视图之间的一致性来学习表示。对比式自监督学习技术是一类很有前途的方法,它通过学习编码来构建表征,编码使两个事物相似或不同
专知会员服务
37+阅读 · 2021年4月18日
【WSDM2021】多交互注意力网络细粒度特征学习的CTR预测
专知会员服务
25+阅读 · 2020年12月27日
ICDE 2022 | 时空间隔感知的序列POI推荐
PaperWeekly
2+阅读 · 2022年11月2日
最新10篇对比学习推荐前沿工作
机器学习与推荐算法
2+阅读 · 2022年9月14日
SIGIR2022 | 推荐算法之对比学习篇
机器学习与推荐算法
6+阅读 · 2022年7月21日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年6月27日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
专知会员服务
37+阅读 · 2021年4月18日
【WSDM2021】多交互注意力网络细粒度特征学习的CTR预测
专知会员服务
25+阅读 · 2020年12月27日
相关资讯
ICDE 2022 | 时空间隔感知的序列POI推荐
PaperWeekly
2+阅读 · 2022年11月2日
最新10篇对比学习推荐前沿工作
机器学习与推荐算法
2+阅读 · 2022年9月14日
SIGIR2022 | 推荐算法之对比学习篇
机器学习与推荐算法
6+阅读 · 2022年7月21日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员