Energy-based models (EBMs) are generative models that are usually trained via maximum likelihood estimation. This approach becomes challenging in generic situations where the trained energy is nonconvex, due to the need to sample the Gibbs distribution associated with this energy. Using general Fenchel duality results, we derive variational principles dual to maximum likelihood EBMs with shallow overparametrized neural network energies, both in the active (aka feature-learning) and lazy regimes. In the active regime, this dual formulation leads to a training algorithm in which one updates concurrently the particles in the sample space and the neurons in the parameter space of the energy. We also consider a variant of this algorithm in which the particles are sometimes restarted at random samples drawn from the data set, and show that performing these restarts at every iteration step corresponds to score matching training. Using intermediate parameter setups in our dual algorithm thereby gives a way to interpolate between maximum likelihood and score matching training. These results are illustrated in simple numerical experiments.
翻译:以能源为基础的模型(EBMs)通常是通过最大可能性估计来培训的基因模型。在经过训练的能源不是碳化的通用情况下,由于需要对这一能源的Gibs分布进行抽样,这一方法具有挑战性。我们利用普通的Fenchel 双重性结果,在活动(aka 地物学习)和懒惰的神经网络系统中,从最大可能性的EBM模型(EBMs)中得出变异性原则与最大可能性的EBM模型(EBMs),在活动(aka 地物学习)和懒惰的系统中,这种双重配制导致一种培训算法,在这种算法中,在抽样空间的粒子和能量参数空间的神经元同时进行更新。我们还考虑了这种算法的变式,即有时在从数据集抽取的随机样本中重新启动这些粒子,并表明在每一个迭代步骤进行这些重机与匹配培训的得分相吻合。在我们的双重算法中的中间参数设置,从而在最大可能性和得分匹配的培训之间进行相互调。这些结果在简单的数字实验中说明。这些结果。