We propose and analyze a seamless extended Discontinuous Galerkin (DG) discretization of advection-diffusion equations on semi-infinite domains. The semi-infinite half line is split into a finite subdomain where the model uses a standard polynomial basis, and a semi-unbounded subdomain where scaled Laguerre functions are employed as basis and test functions. Numerical fluxes enable the coupling at the interface between the two subdomains in the same way as standard single domain DG interelement fluxes. A novel linear analysis on the extended DG model yields unconditional stability with respect to the P\'eclet number. Errors due to the use of different sets of basis functions on different portions of the domain are negligible, as highlighted in numerical experiments with the linear advection-diffusion and viscous Burgers' equations. With an added damping term on the semi-infinite subdomain, the extended framework is able to efficiently simulate absorbing boundary conditions without additional conditions at the interface. A few modes in the semi-infinite subdomain are found to suffice to deal with outgoing single wave and wave train signals more accurately than standard approaches at a given computational cost, thus providing an appealing model for fluid flow simulations in unbounded regions.


翻译:我们提议并分析一个无缝的扩展延伸不连续的 Galerkin (DG) 半无限制的半半径半径线将半无限制半径线分割成一个有限的子域,模型使用标准的多元基基基,半无限制的子域,而半无限制的子域则使用缩放 Laguerre 函数作为基础和测试功能。数字通量使两个子域的界面能够与标准单一域DG 互连通通通通通量相同地连接在一起。关于扩展的DG模型的新的线性分析在P\'eclelt 数方面产生了无条件的稳定性。由于模型使用不同组基础函数而使该模型在不同部分使用的标准多元基函数而导致的错误是微不足道的。在以线性对流和粘度 Burgeres 等值进行的数字实验中,由于在半无限制的子域增加了一个阻断的术语,扩展的框架能够有效地模拟吸收边界条件,而没有在界面上附加条件。在半无定点的电模型中,以若干种模式对P\'ecleclet 样的电流方法提供了一种不精确的精确的精确的计算,因此,在单一电流的亚波的计算中找到一个精确的精确的精确的电流路流方法,从而足以使一个不具有一个精确的精确的精确的计算。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
50+阅读 · 2020年12月14日
【UMD开放书】机器学习课程书册,19章227页pdf,带你学习ML
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月22日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员