Analyzing the effect of business cycle on rating transitions has been a subject of great interest these last fifteen years, particularly due to the increasing pressure coming from regulators for stress testing. In this paper, we consider that the dynamics of rating migrations is governed by an unobserved latent factor. Under a point process filtering framework, we explain how the current state of the hidden factor can be efficiently inferred from observations of rating histories. We then adapt the classical Baum-Welsh algorithm to our setting and show how to estimate the latent factor parameters. Once calibrated, we may reveal and detect economic changes affecting the dynamics of rating migration, in real-time. To this end we adapt a filtering formula which can then be used for predicting future transition probabilities according to economic regimes without using any external covariates. We propose two filtering frameworks: a discrete and a continuous version. We demonstrate and compare the efficiency of both approaches on fictive data and on a corporate credit rating database. The methods could also be applied to retail credit loans.
翻译:分析商业周期对评级过渡的影响是过去15年来引起极大兴趣的一个主题,特别是由于监管者对压力测试的压力越来越大。在本文中,我们认为评级迁移的动态是由一个未观测到的潜在因素决定的。在一个点过滤框架内,我们解释如何从对评级历史的观察中有效地推断出隐藏因素的现状。然后,我们将古典的鲍姆-韦尔什算法调整到我们的设置,并显示如何估计潜在要素参数。一旦校准,我们就可以发现并发现影响实时评级迁移动态的经济变化。为了这个目的,我们调整了一个过滤公式,然后可以在不使用任何外部共差的情况下根据经济制度预测未来的过渡概率。我们提出两个筛选框架:一个离散的和连续的版本。我们演示并比较关于虚拟数据和公司信用评级数据库的方法的效率。这些方法也可以适用于零售信贷贷款。