As a structured prediction task, scene graph generation, given an input image, aims to explicitly model objects and their relationships by constructing a visually-grounded scene graph. In the current literature, such task is universally solved via a message passing neural network based mean field variational Bayesian methodology. The classical loose evidence lower bound is generally chosen as the variational inference objective, which could induce oversimplified variational approximation and thus underestimate the underlying complex posterior. In this paper, we propose a novel doubly reparameterized importance weighted structure learning method, which employs a tighter importance weighted lower bound as the variational inference objective. It is computed from multiple samples drawn from a reparameterizable Gumbel-Softmax sampler and the resulting constrained variational inference task is solved by a generic entropic mirror descent algorithm. The resulting doubly reparameterized gradient estimator reduces the variance of the corresponding derivatives with a beneficial impact on learning. The proposed method achieves the state-of-the-art performance on various popular scene graph generation benchmarks.


翻译:作为结构化的预测任务,场景图生成,给一个输入图像,目的是通过构建可见的场景图形来明确模拟物体及其关系。在目前的文献中,这种任务通过基于平均地位变异学的电文传递神经网络方法得到普遍解决。典型的松散证据下限一般被选为变式推断目标,这可能导致过于简单化的变差近似,从而低估了潜在的复杂后部。在本文中,我们提议一种新型的双倍重新计价重要性加权结构学习方法,该方法采用较严格的重要性加权更低的范围,作为变异推断目标。该方法从从可重新测量的 Gumbel-Softmax 取样器中提取的多个样本中计算出来,由此产生的受控变率任务则由通用的映射后位算法解决。由此产生的双倍再计梯度测算法降低了相应衍生物的差异,对学习产生了有利影响。拟议方法在各种流行图形生成基准上取得了最先进的表现。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年10月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员